The pair of random variables $(X, Y )$ is distributed as follows. $Y$ has probability mass function $\text{Poisson}(1).$ Given $Y , X$ has probability mass function $\text{Poisson}(Y ).$ Show that the probability generation function of $ X + Y $ equals: $$G_{X+Y}(s)=\exp[se^{s-1}-1]$$
I tried to do the following: $$G_{X+Y}(s)=\mathbb{E}(s^{X+Y})=\mathbb{E}(\mathbb{E}(s^{X+Y}|Y))=\mathbb{E}(s^Y\mathbb{E}(s^X|Y))$$
I am stuck with the $\mathbb{E}(s^X|Y)$ part. By definition we know : $\mathbb{E}(X|Y))=\sum_{1}^{\infty}x\mathbb{P}(X=x|Y)$, but how do we apply and determine it for $s^X$?