View source on GitHub |
Calculates the number of false negatives.
Inherits From: Metric
tfma.metrics.FalseNegatives( thresholds: Optional[Union[float, List[float]]] = None, name: Optional[str] = None, top_k: Optional[int] = None, class_id: Optional[int] = None ) If sample_weight is given, calculates the sum of the weights of false negatives.
If sample_weight is None, weights default to 1. Use sample_weight of 0 to mask values.
Methods
computations
computations( eval_config: Optional[tfma.EvalConfig] = None, schema: Optional[schema_pb2.Schema] = None, model_names: Optional[List[str]] = None, output_names: Optional[List[str]] = None, sub_keys: Optional[List[Optional[SubKey]]] = None, aggregation_type: Optional[AggregationType] = None, class_weights: Optional[Dict[int, float]] = None, example_weighted: bool = False, query_key: Optional[str] = None ) -> tfma.metrics.MetricComputations Creates computations associated with metric.
from_config
@classmethodfrom_config( config: Dict[str, Any] ) -> 'Metric'
get_config
get_config() -> Dict[str, Any] Returns serializable config.
result
result( tp: float, tn: float, fp: float, fn: float ) -> float Function for computing metric value from TP, TN, FP, FN values.
View source on GitHub