tfp.experimental.nn.Sequential

A Layer characterized by iteratively given functions.

Inherits From: Layer

also_track

layers

name Returns the name of this module as passed or determined in the ctor.

name_scope Returns a tf.name_scope instance for this class.
non_trainable_variables Sequence of non-trainable variables owned by this module and its submodules.
submodules Sequence of all sub-modules.

Submodules are modules which are properties of this module, or found as properties of modules which are properties of this module (and so on).

a = tf.Module() b = tf.Module() c = tf.Module() a.b = b b.c = c list(a.submodules) == [b, c] True list(b.submodules) == [c] True list(c.submodules) == [] True

trainable_variables Sequence of trainable variables owned by this module and its submodules.

validate_args Python bool indicating possibly expensive checks are enabled.
variables Sequence of variables owned by this module and its submodules.

Methods

load

View source

save

View source

set_trace

View source

summary

View source

with_name_scope

Decorator to automatically enter the module name scope.

class MyModule(tf.Module):  @tf.Module.with_name_scope  def __call__(self, x):  if not hasattr(self, 'w'):  self.w = tf.Variable(tf.random.normal([x.shape[1], 3]))  return tf.matmul(x, self.w)

Using the above module would produce tf.Variables and tf.Tensors whose names included the module name:

mod = MyModule() mod(tf.ones([1, 2])) <tf.Tensor: shape=(1, 3), dtype=float32, numpy=..., dtype=float32)> mod.w <tf.Variable 'my_module/Variable:0' shape=(2, 3) dtype=float32, numpy=..., dtype=float32)>

Args
method The method to wrap.

Returns
The original method wrapped such that it enters the module's name scope.

__call__

View source

Call self as a function.

__getitem__

View source