A potential approach is to adaptive threshold, perform some morphological operations, and remove noise using aspect ratio + contour area filtering. From here we can bitwise-and the resulting mask and the input image to get a cleaned image. Here's the result:

Since you didn't specify a language, I implemented it in Python
import cv2 import numpy as np # Load image, create blank mask, convert to grayscale, Gaussian blur # then adaptive threshold to obtain a binary image image = cv2.imread('1.jpg') mask = np.zeros(image.shape, dtype=np.uint8) gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) blur = cv2.GaussianBlur(gray, (7,7), 0) thresh = cv2.adaptiveThreshold(blur,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV,51,9) # Create horizontal kernel then dilate to connect text contours kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5,2)) dilate = cv2.dilate(thresh, kernel, iterations=2) # Find contours and filter out noise using contour approximation and area filtering cnts = cv2.findContours(dilate, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) cnts = cnts[0] if len(cnts) == 2 else cnts[1] for c in cnts: peri = cv2.arcLength(c, True) approx = cv2.approxPolyDP(c, 0.04 * peri, True) x,y,w,h = cv2.boundingRect(c) area = w * h ar = w / float(h) if area > 1200 and area < 50000 and ar < 6: cv2.drawContours(mask, [c], -1, (255,255,255), -1) # Bitwise-and input image and mask to get result mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY) result = cv2.bitwise_and(image, image, mask=mask) result[mask==0] = (255,255,255) # Color background white cv2.imshow('thresh', thresh) cv2.imshow('mask', mask) cv2.imshow('result', result) cv2.waitKey()