This makes me think of fractals - following a boundary in a julia set or something along those lines.
If N is 1000, use a 2^500 x 2^500 fractal bitmap (obviously don't generate it in advance - you can derive each pixel on demand, and most won't be needed). Each pixel move is one pixel up, down, left or right following the boundary line between pixels, like a simple bitmap tracing algorithm. So long as you start at the edge of the bitmap, you should return to the edge of the bitmap sooner or later - following a specific "colour" boundary should always give a closed curve with no self-crossings, if you look at the unbounded version of that fractal.
The x and y axes of the bitmap will need "Gray coded" co-ordinates, of course - a bit like oversized Karnaugh maps. Each step in the tracing (one pixel up, down, left or right) equates to a single-bit change in one bitmap co-ordinate, and therefore in one bit of the resulting values in the random walk.
EDIT
I just realised there's a problem. The more wrinkly the boundary, the more likely you are in the tracing to hit a point where you have a choice of directions, such as...
* | . ---+--- . | *
Whichever direction you enter this point, you have a choice of three ways out. Choose the wrong one of the other two and you may return back to this point, therefore this is a possible self-crossing point and possible repeat. You can eliminate the continue-in-the-same-direction choice - whichever way you turn should keep the same boundary colours to the left and right of your boundary path as you trace - but this still leaves a choice of two directions.
I think the problem can be eliminated by making having at least three colours in the fractal, and by always keeping the same colour to one particular side (relative to the trace direction) of the boundary. There may be an "as long as the fractal isn't too wrinkly" proviso, though.
The last resort fix is to keep a record of points where this choice was available. If you return to the same point, backtrack and take the other alternative.