I'm using the emmeans package with a negative-binomial model implemented using the glmmTMB package. I'm trying to bias adjust my backtransformed emmeans per the workflow illustrated here: https://cran.r-project.org/web/packages/emmeans/vignettes/transformations.html#bias-adj
As I've understood, I need the bias adjustment to be based on the variance of the random effects which can be obtained with VarCorr(nbinom_mod)
The problem is, I can't figure out how to extract that Std.Dev. value
library(glmmTMB) library(emmeans) library(dplyr) data(cbpp, package="lme4") nbinom_mod <- glmmTMB(incidence ~ period + (1|herd), data = cbpp, family = nbinom2) # Here's what I want to do but it fails since VarCorr doesn't return a number, it returns an object nbinom_em <- emmeans(nbinom_mod, ~ period, bias.adjust = T, sigma = VarCorr(nbinom_mod), type = "response") So I've tried to extract data from VarCorr(nbinom_mod)and failed as such:
> class(VarCorr(nbinom_mod)) [1] "VarCorr.glmmTMB" > > typeof(VarCorr(nbinom_mod)) [1] "list" # This didn't work > unlist(VarCorr(nbinom_mod)) cond.herd 8.186695e-09 > VarCorr(nbinom_mod) Conditional model: Groups Name Std.Dev. herd (Intercept) 9.048e-05 > VarCorr(nbinom_mod)$cond $herd (Intercept) (Intercept) 8.186695e-09 attr(,"stddev") (Intercept) 9.048036e-05 attr(,"correlation") (Intercept) (Intercept) 1 attr(,"blockCode") us 1 attr(,"sc") [1] 1.626599 attr(,"useSc") [1] FALSE > VarCorr(nbinom_mod)$cond$herd (Intercept) (Intercept) 8.186695e-09 attr(,"stddev") (Intercept) 9.048036e-05 attr(,"correlation") (Intercept) (Intercept) 1 attr(,"blockCode") us 1 # Still didnt work > VarCorr(nbinom_mod)$cond$herd[1] [1] 8.186695e-09 > VarCorr(nbinom_mod)$cond$herd[2] [1] NA