I am fitting different 2D geometric transformations by least-squares.
For instance quadratic,
$$\begin{cases}a'x^2+b'xy+c'y^2+d'x+e'y+f'=X\\a''x^2+b''xy+c''y^2+d''x+e''y+f''=Y\end{cases}$$
which is linear in the unknowns $a',b',\cdots f''$.
I also solve homographic transformations
$$\begin{cases}\dfrac{a'x+b'y+c'}{dx+ey+1}=X\\\dfrac{a''x+b''y+c''}{dx+ey+1}=Y\end{cases}$$
by linearization,
$$\begin{cases}a'x+b'y+c'-dxX-eyX=X\\a''x+b''y+c''-dxY-eyY=Y.\end{cases}$$
This works fine.
But when I switch to the more complex rational model
$$\begin{cases}\dfrac{a'x^2+b'xy+c'y^2+d'x+e'y+f'}{gx+hy+1}=X\\\dfrac{a''x^2+b''xy+c''y^2+d''x+e''y+f''}{gx+hy+1}=Y\end{cases}$$
on the same points, the resolution by linearization always results in a solution such that the singular line $gx+hy+1=0$ crosses the $(x,y)$ point cloud and makes a poor fitting. I had expected that the fit would improve, as the number of adjustable parameters is larger.
Do you have a mathematical explanation of this phenomenon ?
Typical sample data ($x,y,X,Y$):
155,277,0,0 191,271,0,2 265,261,0,6 340,259,0,10 376,259,0,12 415,258,0,14 452,260,0,16 725,261,0,30 804,266,0,34 841,264,0,36 878,273,0,38 173,245,1,1 209,247,1,3 247,242,1,5 321,237,1,9 358,234,1,11 433,233,1,15 509,228,1,19 586,235,1,23 624,231,1,25 706,234,1,29 823,240,1,35 859,244,1,37 192,228,2,2 303,224,2,8 415,210,2,14 452,215,2,16 490,216,2,18 528,213,2,20 567,212,2,22 686,215,2,28 765,224,2,32 804,216,2,34 878,226,2,38 248,207,3,5 285,206,3,7 395,198,3,13 432,191,3,15 508,185,3,19 547,193,3,21 586,189,3,23 706,193,3,29 746,193,3,31 823,201,3,35 192,188,4,2 229,189,4,4 302,179,4,8 339,179,4,10 451,171,4,16 490,175,4,18 528,175,4,20 567,175,4,22 686,170,4,28 726,174,4,30 764,174,4,32 876,180,4,38 247,165,5,5 285,162,5,7 321,161,5,9 359,158,5,11 395,154,5,13 547,151,5,21 584,149,5,23 705,152,5,29 746,155,5,31 783,153,5,33 823,155,5,35 192,151,6,2 228,147,6,4 264,149,6,6 414,138,6,14 488,131,6,18 528,135,6,20 566,134,6,22 605,135,6,24 686,134,6,28 804,138,6,34 840,140,6,36 173,134,7,1 283,122,7,7 321,122,7,9 357,117,7,11 395,119,7,13 547,114,7,21 624,114,7,25 665,118,7,27 744,113,7,31 821,114,7,35 858,124,7,37 191,107,8,2 303,103,8,8 339,98,8,10 376,98,8,12 450,91,8,16 528,92,8,20 645,94,8,26 685,90,8,28 725,92,8,30 803,96,8,34 875,97,8,38 173,92,9,1 245,86,9,5 320,82,9,9 394,76,9,13 431,77,9,15 469,77,9,17 546,73,9,21 664,73,9,27 704,70,9,29 857,77,9,37 155,74,10,0 190,69,10,2 227,67,10,4 302,60,10,8 413,56,10,14 527,50,10,20 565,48,10,22 604,51,10,24 644,50,10,26 724,49,10,30 763,51,10,32 802,51,10,34 839,55,10,36