Let us parametrize $M_5(\mathbb R)$ by 10 parameters $(a_1, \dots a_5, b_1, \dots, b_5)$ in following way \begin{align} \tag{$\star$} A = \begin{pmatrix} 0 & -a_1 & 0 & 0 & -b_1 \\ 1 & -a_2 & 0 & 0 & -b_2 \\ 0 & -a_3 & 0 & 0 & -b_3 \\ 0 & -a_4 & 1 & 0 & -b_4 \\ 0 & -a_5 & 0 &1 & -b_5 \end{pmatrix}. \end{align} Let us define a set $\mathcal E$ \begin{align*} \mathcal E = \{A \in (\star): \max_i \text{Re}(\lambda_i(A)) = 0\}, \end{align*} i.e., matrices parametrized as $\star$ having the largest real part of all eigenvalues is $0$. Let \begin{align*} \mathcal F = \{A \in \mathcal E: A \text{ has distinct eigenvalues}\}. \end{align*} I am wondering whether $\mathcal F$ is dense in $\mathcal E$.
See Is $\{A \in E: A \text{ has distinct eigenvalues}\}$ dense in $E = \{A \in M_n(\mathbb R): \max_i \text{Re}(\lambda_i(A))=0\}$? for discussions for matrices with no particular structure assumed.