0
$\begingroup$

Let $ n > 1 \in \mathbb{Z^+}$. Consider the following function: $$S(p_1, p_2,...,p_n)=-\sum_{i=1}^n p_i \, ln(p_i) $$

defined for $0 < p_1, p_2,...,p_n < 1$ and subject to the constraint, $$\sum_{i=1}^np_i=1$$

Explain with details whether the function has absolute maximum and minimum. Find the point(s) using the method of Lagrange Multipliers.

How can I solve this question?

$\endgroup$

1 Answer 1

0
$\begingroup$

Here's how to get started. $$-\nabla \sum_{i=1}^np_i\ln p_i=\lambda \nabla (\sum_{i=1}^np_i-1). $$ $$-[\ln p_1+1,...,\ln p_n+1]=\lambda[1,...,1]$$ $$=[\lambda,...,\lambda].$$ Thus $$-(\ln p_1+1)=\lambda,...,-(\ln p_n+1)=\lambda$$ $$\ln p_1+1=...=\ln p_n+1$$ $$\ln p_1=...=\ln p_n$$ $$p_1=...=p_n$$ $$p_1+...+p_1=1$$ $$p_1=1/n.$$ $$p_1=...=p_n=1/n.$$ The critical point is $(\frac{1}{n},...,\frac{1}{n}).$ You can take it from there.

$\endgroup$

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.