2
$\begingroup$

Let $$ J = \begin{bmatrix} 0 & 1 & \dots & 1\\ 1 & 0 & \dots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 1 & 0 & \dots & 0 \end{bmatrix}, \ \ \ \ \ K= \begin{bmatrix} 0 & 0 & \dots & 0\\ 0 & k_{11} & \dots & k_{1n}\\ \vdots & \vdots & \ddots & \vdots\\ 0 & k_{n1} & \dots & k_{nn} \end{bmatrix} $$ two $N \times N$ matrices and F = J+K.

Doing some numerical experiments I noticed that the following relation holds: $$ \frac{\lVert F \rVert_F}{\lVert F \rVert} \leq \frac{\lVert K \rVert_F}{\lVert K \rVert} + \frac{\lVert J \rVert_F}{\lVert J \rVert} $$ where $\lVert . \rVert_F$ is the Frobenius norm and $\lVert . \rVert$ is the spectral norm.

Is it true for all K? How can I prove it?

$\endgroup$

1 Answer 1

4
$\begingroup$

Yes, it's true and the result is rather trivial. In general, suppose $$ J=\pmatrix{0&u^T\\ v&0},\,K=\pmatrix{0&0\\ 0&B}\text{ and }F=J+K=\pmatrix{0&u^T\\ v&B}. $$ Then $$ \|J\|_2=\max\{\|u\|_2,\|v\|_2\}=\max\{\|Fe_1\|_2,\|e_1^TF\|_2\}\le\|F\|_2 $$ and $\|K\|_2=\|B\|_2\le\|F\|_2$ because $B$ is a submatrix of $F$. Therefore $$ \frac{\|K\|_F}{\|K\|_2} + \frac{\|J\|_F}{\|J\|_2} \ge\frac{\|K\|_F+\|J\|_F}{\|F\|_2} \ge\frac{\sqrt{\|K\|_F^2+\|J\|_F^2}}{\|F\|_2} =\frac{\|F\|_F}{\|F\|_2}. $$

$\endgroup$

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.