Let $$ J = \begin{bmatrix} 0 & 1 & \dots & 1\\ 1 & 0 & \dots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 1 & 0 & \dots & 0 \end{bmatrix}, \ \ \ \ \ K= \begin{bmatrix} 0 & 0 & \dots & 0\\ 0 & k_{11} & \dots & k_{1n}\\ \vdots & \vdots & \ddots & \vdots\\ 0 & k_{n1} & \dots & k_{nn} \end{bmatrix} $$ two $N \times N$ matrices and F = J+K.
Doing some numerical experiments I noticed that the following relation holds: $$ \frac{\lVert F \rVert_F}{\lVert F \rVert} \leq \frac{\lVert K \rVert_F}{\lVert K \rVert} + \frac{\lVert J \rVert_F}{\lVert J \rVert} $$ where $\lVert . \rVert_F$ is the Frobenius norm and $\lVert . \rVert$ is the spectral norm.
Is it true for all K? How can I prove it?