0
$\begingroup$

I faced the following problem when fooling around with quadrilaterals.

Let $ABCD$ be a convex quadrilateral. On the edge AB, CD, pick E, F such that $\dfrac{EB}{EA} =\dfrac{FC}{FD}$. Let $M, P, N$ be the midpoint of AD, EF, BC respectively. Prove that M, P, N are collinear.

Collinear

Here is my attempt:

It's not hard to check that $\vec{MN}=\vec{AN}-\vec{AM}= \dfrac{1}{2}(\vec{AB}+\vec{AC}-\vec{AD})=\dfrac{1}{2}(\vec{AB}+\vec{DC})$.
Similarly $\vec{PN}=\dfrac{1}{2}(\vec{EB}+\vec{FC})$.

Now, let $\dfrac{EB}{EA} =\dfrac{FC}{FD} = k$, then $\dfrac{EB}{AB} =\dfrac{FC}{DC}=\dfrac{k}{k+1}=l$.

Then $\vec{PN}=\dfrac{1}{2}(\dfrac{EB}{AB} \vec{AB}+\dfrac{FC}{DC}\vec{DC})=l\dfrac{1}{2}(\vec{AB}+\vec{DC}) = l\vec{MN}$.

Hence, $\vec{MN}\uparrow \uparrow \vec{PN}$, therefore M, P, N are collinear.

Problem solved, however, I wonder if there are any other Euclidean solutions for this. I found no direction to solve this via any elementary technique. If you found one, please give me a hint or share here. Thanks.

$\endgroup$
1
  • 2
    $\begingroup$ Note that there's nothing special about the midpoint property. The result works whenever $\frac{AM}{MD} = \frac{EP}{PF} = \frac{BN}{NC}$, using a minor tweak to your vector argument. Specifically, if we write $$E:=\frac{A+pB}{1+p}\quad F:=\frac{C+pD}{1+p}\quad M:=\frac{A+qC}{1+q}\quad N:=\frac{B+qD}{1+q}$$ then $$\frac{E+qF}{1+q}=\frac{A+pB+qC+pqD}{(1+p)(1+q)}=\frac{M+pN}{1+p}$$ which places the point at the intersection of $EF$ and $MN$. $\endgroup$ Commented Nov 2 at 2:29

1 Answer 1

1
$\begingroup$

First let us state and prove a lemma:

enter image description here

In the figure, if $AM=MD$, $HP=PJ$ and $HJ || AD$,

then $N, P, M$ are collinear.

Proof:

Consider $\Delta NHP$ and $\Delta NAM$,

$\angle NHP= \angle NAM$ and $\frac{NH}{HP}=\frac{NA}{AM} \implies \Delta NHP \sim \Delta NAM.$

$\therefore \angle HNP= \angle ANM$.

$\therefore N, P, M$ are collinear. $$$$ $\mathbf{Main \; proof:}$

Let us redraw the figure as follows:

enter image description here

$\mathbf{Construction:}$

In the figure, $EH \; || \; BN,$ $HJ \; || \; AD$ and $ \; JF_1|| \; NC$.

$EF_1$ intersects $HJ$ at $P_1$

$$$$ $\mathbf{Proof:}$

$\mathbf{Part \; (i):} $ We first prove that $F_1=F$ and $P_1=P$. $$$$ (1) $\Delta ANB \sim \Delta AHE \implies \frac{AE}{EB}=\frac{AH}{HN}$

(2) $\Delta NAD \sim \Delta NHJ \implies \frac{AH}{HN}=\frac{DJ}{JN}$

(3) $\Delta DNC \sim \Delta DJF_1 \implies \frac{DJ}{JN}=\frac{DF_1}{F_1C}$

(4) Hence $\frac{AE}{EB}=\frac{DF_1}{F_1C}$.

(5) Thus $F_1=F.$

(6) Note that $\Delta F_1PJ \cong \Delta EHP_1 \implies F_1P_1=EP_1.$

(7) Hence $P_1=P$

$$$$ $\mathbf{Part \; (ii):}$

(8) Note that from $\Delta F_1P_1J \cong \Delta EHP_1, P_1J=HP_1 $, i.e. $P_1$ is the mid-point of $HJ$.

(9) From our lemma, $N, P_1, M$ are collinear.

(10) Since $P_1=P$, $N, P, M$ are collinear.

$\endgroup$

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.