Updated
plt=ParametricPlot3D[{Cos[ϕ]*Sin[θ], Sin[θ]*Sin[ϕ], Cos[θ]}, {θ, 0, Pi}, {ϕ, 0, 2*Pi}, PlotPoints -> 200, PlotRange -> 1, ImageSize -> 400, Axes -> False, ColorFunction -> (Hue[#5, 1, 1, 0.75] &)]; cf = Compile[{{v, _Real, 1}, t}, (1 - t) v + t v/(Sqrt[2] Max[Abs[v]]), RuntimeAttributes -> {Listable}]; Manipulate[plt /. GraphicsComplex[pts_, rest___] :> GraphicsComplex[cf[pts, t], rest], {t, 0., 1}]

Previous answer:
Rectangle to circle:

Manipulate[ ContourPlot[(1 - t) (Max@Abs@{x, y} - 1) + t (x^2 + y^2 - 1) == 0, {x, -1.2, 1.2}, {y, -1.2, 1.2}, PlotPoints -> 80], {t, 0, 1}]

Cube to sphere:
frames = ParallelTable[ ContourPlot3D[(1 - t) (Max[Abs@{x, y, z}] - 1) + t (x^2 + y^2 + z^2 - 1) == 0, {x, -#, #}, {y, -#, #}, {z, -#, #}, PlotPoints -> 10, Mesh -> None, Boxed -> False, Axes -> False] &@1.1, {t, 0, 1, 1/50.}]; // AbsoluteTiming Animate[frames[[i]], {i, 1, Length[frames], 1}]
