I've been working with these non-linear differential equations. I was trying to get a symbolic solution using DSolve, however I only succeed in solving the system using NDSolve. The question here is, how can I reuse the obtained NDSolve interpolating functions, Y and Z, to obtain the derivatives of the expressions: FelastY and FelastZ (shown below) and then plot them to see their behavior as functions of theta. How can I manipulate or reuse numerical solutions to plot symbolic expressions? I only get an error message that says: "ReplaceAll::reps:{sol} is neither a list of replacement rules nor a valid dispatch table." Hope you can help me.
(* Parameters: *) β = Pi; c = 2; m = 5; exc = 26 10 - 4; Ω = 1; g = 9.81; d = 0.0254; ad = 0.3; a = ad*d; young = 210 10^9; iner = (Pi/64)*d^4; ld = 24; L = ld*d; kξ = 6.5; kη = 7.5; kξη = kξ/5; ψ = ArcCos[(Y[θ]*Cos[θ] + Z[θ]*Sin[θ])/(Sqrt[ Y[θ]^2 + Z[θ]^2])]; G = (1 + Sin[ψ])/2; c2t = TrigExpand[Cos[2*θ]]; s2t = TrigExpand[Sin[2*θ]]; ctb = TrigExpand[Cos[θ - β]]; stb = TrigExpand[Sin[θ - β]]; (* Equations: *) eq1 = (m*Y''[θ]) + (c*Y'[θ]) + (kξ + kη)* Y[θ]/2 + G/2*(((kξ - kη)*c2t) - (2*kξη*s2t))* Y[θ] + G/2*(((kξ - kη)*s2t) + (2*kξη*c2t))* Z[θ] == (m*exc*(Ω^2)*ctb) - (m*g); eq2 = (m*Z''[θ]) + (c*Z'[θ]) + (kξ + kη)* Z[θ]/2 + G/2*(((kξ - kη)*c2t) - (2*kξη*s2t))* Z[θ] + G/2*(((kξ - kη)*s2t) + (2*kξη*c2t))* Y[θ] == (m*exc*(Ω^2)*stb); sol2 = NDSolve[{eq1, eq2, Y[0] == -7, Z[0] == 0.1, Y'[0] == 0, Z'[0] == 0}, {Y[θ], Z[θ]}, {θ, 0, 200*Pi}] g4 = ParametricPlot[ Evaluate[{Y[θ], Z[θ]} /. sol2], {θ, 0, 200*Pi}, PlotRange -> All] These are the expressions in which I would like to reuse the numeric solutions Y and Z (interpolating functions) that I obtained from NDSolve:
FelastY[Y_?NumericQ, Z_?NumericQ] := (kξ + kη)*Y[θ]/2 + G/2*(((kξ - kη)*c2t) - (2*kξη*s2t))*Y[θ] + G/2*(((kξ - kη)*s2t) + (2*kξη*c2t))*Z[θ] FelastY[Y[th] /. sol2] FelastZ[Y_?NumericQ, Z_?NumericQ] := (kξ + kη)*Z[θ]/2 + G/2*(((kξ - kη)*c2t) - (2*kξη*s2t))*Z[θ] + G/2*(((kξ - kη)*s2t) + (2*kξη*c2t))*Y[θ] FelastZ[Z[th] /. sol2] 
