For definite integrals MMA gives identities in terms of Meijer G-functions, e.g.
$\begin{align}\sqrt{\pi}\int_0^\infty \textrm{e}^{-4x/t^2-t}\ \textrm{d}t &= G_{0,\,3}^{3,\,0} \left( x\left. \right|\ 0,1/2,1 \right) \tag{1}\\ \sqrt{\pi}\int_0^\infty t\ K_1(t)\ \textrm{e}^{-4\sqrt{x}/t} \ \textrm{d}t &= G_{0,\,4}^{4,\,0} \left(\left. x \ \right| \ 0,1/2,1/2,3/2 \right) \tag{2}\\ 4\int_0^\infty t^{-1}\ K_2(t) \ \textrm{e}^{-4x/t^2} \ \textrm{d}t &= G_{0,\,3}^{3,\,0} \left(\left. x \ \right| -1,0,1 \right) \tag{3}\end{align}$
$\Tiny{\text{In eqs.(1-3) it is assumed that x>0.}\\K_1,K_2\ldots \text{modified Bessel functions of order 1 and 2}\\ G\ldots \text{Meijer G-function}}$
Sqrt[π]*Integrate[Exp[-4x/t^2-t],{t,0,∞}] (*MeijerG[{{},{}},{{0,1/2,1},{}},x]*) Sqrt[π]*Integrate[t*Exp[-4Sqrt[x]/t]*BesselK[1,t],{t,0,∞}] (*MeijerG[{{},{}},{{0,1/2,1/2,3/2},{}},x]*) 4*Integrate[1/t*BesselK[2,t]*Exp[-4x/t^2],{t,0,∞}] (*MeijerG[{{},{}},{{-1,0,1},{}},x]*) Given a Meijer G-function (e.g. eqs.(1-3) or other ones), how to tell MMA to express the Meijer G-function by an integral or other expressions?
MMA 12.1
InverseLaplaceTransform? $\endgroup$x->x sand inverse transform $\endgroup$Integrate[Exp[-k*x],{x,0,Infinity},Assumptions->k>=0]performs1/k. How to restore that integral from1/k? $\endgroup$