How to optimize the two tangents of a circle by passing through a point outside the circle and calculate the sine value of the angle between the two tangents?
The equation for a circle is: x ^ 2+y ^ 2-4 x -1==0
The point outside the circle is: {0, -2}
Draw two tangents of circle x ^ 2+y ^ 2-4 x -1==0 through {0, -2}
The angle between two tangent lines is a, find Sin [a]
My attempt is as follows:
Clear["Global`*"] eqn = x^2 + y^2 - 4 x - 1 == 0; rule = SolveAlways[{Apply[Subtract]@eqn == dd ((x - aa)^2 + (y - bb)^2 - cc)}, {x, y}][[1]] (x - aa)^2 + (y - bb)^2 == cc /. rule {{aa, bb}, Sqrt[cc]} /. rule eqs = {{0, -2}, x^2 + y^2 - 4 x - 1 == 0}; reg = ImplicitRegion[y + 2 == k x, {x, y}]; pt = {2, 0}; RegionDistance[reg, pt]; Reduce[RegionDistance[reg, pt] == Sqrt[5], k] eqs2 = {y + 2 == (-4 - Sqrt[15]) x, y + 2 == (-4 + Sqrt[15]) x} tan\[Alpha] = (-4 - Sqrt[15] - (-4 + Sqrt[15]))/( 1 + (-4 - Sqrt[15]) (-4 + Sqrt[15])) // FullSimplify Reduce[{Sin[\[Alpha]] == -Sqrt[15] Cos[\[Alpha]], Sin[\[Alpha]]^2 + Cos[\[Alpha]]^2 == 1, t == Sin[\[Alpha]]}, t] ContourPlot[Evaluate@{eqs, eqs2}, {x, -1, 5}, {y, -3, 3}, Epilog -> {Red, PointSize[0.01], Point[{0, -2}]}, PlotLegends -> Placed[eqs, {0.8, 0.15}], AspectRatio -> Automatic, Frame -> False, Axes -> True, AxesStyle -> Arrowheads[{0.0, 0.04}], AxesLabel -> {x, y}, ImageSize -> Full] Are there any other good methods or ways to optimize the code? The best code is universal, capable of inputting equations for any circle and a point outside any circle, automatically generating tangent equations, drawing images, and calculating corresponding values.


