Gaboriau-Jaeger-Levitt-Lustig (Theorem II.1) constructed an invariant $\mathbb{R}$-tree $T$ with $F_n$ action given any outer automorphism of free groups $\Phi\in \mathrm{Out}(F_n)$. They showed that $F_n$ acts on $T$ isometrically, non-trivially, minimally with trivial arc stabilizers. The invariant tree being non-simplicial with dense orbits follows from a quick argument of Proposition 3.10 in Paulin 1997. I want to take a look at a simple example of what this construction gives us. But I got something simplicial and I'm confused.
My example: consider the non-abelian free group $F_2=\langle a,b\rangle$ and an irreducible element $\Phi\in\mathrm{Out}(F_2)$ be $a\mapsto b,b\mapsto ab$. Let $R_2$ be a rose of rank $2$ where we label $a,b$ clockwise on the two circles from left to right. Consider the train track representative $\varphi:R_2\to R_2$ mapping $a\mapsto b$ and $b\mapsto ab$ and the transition matrix $M(\varphi)$ that has Perron-Frobenius eigenvalue $\lambda=\frac{1+\sqrt{5}}{2}$, left Perron-Frobenius eigenvector $L=[\frac{\lambda^2}{1+\lambda^2},\frac{\lambda^3}{1+\lambda^2}]$, and right Perron-Frobenius eigenvector $R=[\lambda^{-2},\lambda^{-1}]^T$ satisfying $\sum_i R_i=1$ and $L\cdot R=1$.
Equip $R_2$ the Perron-Frobenius metric $L$ such that $\ell(a)=L(1),\ell(b)=L(2)$. Let $(T,d)$ be the universal cover of $R_2$ with the lifted metric and denote $||\cdot||_{T}$ its length. We construct the invariant tree $T_+:=(T,d^*_{+})$ where
$$d_+(x,y)=\lim_{p\to\infty} \frac{d(\varphi^p(x),\varphi^p(y))}{\lambda^p}$$
and $d^*_{+}$ is the induced metric from the pseudo metric $d_{+}$. For any segment $\beta$ in $T$, we have $d_+(\beta)=\lim_{p\to\infty}\frac{||\varphi^p(\beta)||_{T}}{\lambda^p}$. Since $\varphi$ is a train track map then $d_+(\beta)=||\beta||_{T}$ for any legal path $\beta$ in $T$. For arbitrary path $\beta$ in $T$, we have the estimation that
$$\sum_{e}\frac{N_e^p}{\lambda^p}\cdot\frac{||\varphi^{p_0}(e)||_T}{\lambda^{p_0}}[1-\frac{2BBT(\varphi)}{||\varphi^{p_0}(e)||_T}]\leq\frac{||\varphi^{p+p_0}(\beta)||}{\lambda^{p+p_0}}\leq \sum_{e}\frac{N_e^p}{\lambda^p}\cdot\frac{||\varphi^{p_0}(e)||_T}{\lambda^{p_0}}$$
where $N_e^p$ denotes the occurrence of $e$ in $\varphi^p(\beta)$. When $p_0$ is large, it follows from Perron-Frobenius theory that $d_+(\beta)$ is approximately $||\beta||_T\cdot \sum_{e}R(e)||e||=||\beta||_T$. So, it turns out $d_+(\beta)=d(\beta)$ for any edge path $\beta$ in $T$. But how is this an $\mathbb{R}$-tree with dense orbits?
Thanks for your help!