The prime shift function $s(n)$ for $n\in\Bbb N$ is defined by $$s\Big(\prod_ip_i^{e_i}\Big)=\prod_ip_{i+1}^{e_i},$$ where $p_i$ is the $i$-th prime.
Here are the values of $s(1),\dots,s(100)$:
\begin{matrix} 1,&3,&5,&9,&7,&15,&11,&27,&25,&21,\\ 13,&45,&17,&33,&35,&81,&19,&75,&23,&63,\\ 55,&39,&29,&135,&49,&51,&125,&99,&31,&105,\\ 37,&243,&65,&57,&77,&225,&41,&69,&85,&189,\\ 43,&165,&47,&117,&175,&87,&53,&405,&121,&147,\\ 95,&153,&59,&375,&91,&297,&115,&93,&61,&315,\\ 67,&111,&275,&729,&119,&195,&71,&171,&145,&231,\\ 73,&675,&79,&123,&245,&207,&143,&255,&83,&567,\\ 625,&129,&89,&495,&133,&141,&155,&351,&97,&525,\\ 187,&261,&185,&159,&161,&1215,&101,&363,&325,&441\\ \end{matrix}
A plot of the first thousand values:
What is the order of growth of $s(n)$? (Also, does $s(n)$ have a name in the literature?)
