Perform the following integration: $$ \int \dfrac{ 1}{x^2 \sqrt{x^2+1} } dx $$
Answer:
Let $I$ be the integral we are trying to evaluate. Let $\tan \theta = x$. We have: \begin{align*} dx &= \sec^2 \theta \,\, d\theta \\ I &= \int \dfrac{ 1}{\tan^2 \theta \sqrt{ \tan^2 \theta +1} } \,\, \sec^2 \theta \,\, d\theta \\ % I &= \int \dfrac{ 1}{\tan^2 \theta \sec \theta } \,\, \sec^2 \theta \,\, d\theta \\ % I &= \int \dfrac{ 1}{\tan^2 \theta } \,\, \sec \theta \,\, d\theta \\ % I &= \int \left(\dfrac{1}{ \cos \theta } \right) \left( \dfrac{ \cos^2 \theta }{ \sin^2 \theta } \right) \,\, d\theta \\ % I &= \int \cot \theta \csc \theta \,\, d\theta \\ I &= - \csc \theta + C \\ \end{align*} Now we need to substitute back. \begin{align*} I &= -\dfrac{1}{\sin \theta} + C \\ \end{align*} How do I finish the problem?
Using an online integral calculator I find the answer is: $$ I = - \dfrac{ \sqrt{ x^2 + 1 } }{x} $$
