2
$\begingroup$

Perform the following integration: $$ \int \dfrac{ 1}{x^2 \sqrt{x^2+1} } dx $$

Answer:

Let $I$ be the integral we are trying to evaluate. Let $\tan \theta = x$. We have: \begin{align*} dx &= \sec^2 \theta \,\, d\theta \\ I &= \int \dfrac{ 1}{\tan^2 \theta \sqrt{ \tan^2 \theta +1} } \,\, \sec^2 \theta \,\, d\theta \\ % I &= \int \dfrac{ 1}{\tan^2 \theta \sec \theta } \,\, \sec^2 \theta \,\, d\theta \\ % I &= \int \dfrac{ 1}{\tan^2 \theta } \,\, \sec \theta \,\, d\theta \\ % I &= \int \left(\dfrac{1}{ \cos \theta } \right) \left( \dfrac{ \cos^2 \theta }{ \sin^2 \theta } \right) \,\, d\theta \\ % I &= \int \cot \theta \csc \theta \,\, d\theta \\ I &= - \csc \theta + C \\ \end{align*} Now we need to substitute back. \begin{align*} I &= -\dfrac{1}{\sin \theta} + C \\ \end{align*} How do I finish the problem?
Using an online integral calculator I find the answer is: $$ I = - \dfrac{ \sqrt{ x^2 + 1 } }{x} $$

$\endgroup$
2
  • 3
    $\begingroup$ Continuing your work, you just need to express $\csc\theta$ in terms of $x$. Recall that $\csc^2\theta=\cot^2\theta+1$ and hence $\csc\theta=\sqrt{\cot^2\theta+1}=\sqrt{(1/x)^2+1}$, now simplify. Do note that this all assumes $x\gt 0$ and we simplify the square roots $\sqrt{(\cdots)^2}$ as $\cdots$ instead of $|\cdots|$ $\endgroup$ Commented Sep 8, 2023 at 21:09
  • $\begingroup$ Almost any integral is as described in the title. $\endgroup$ Commented Sep 8, 2023 at 23:07

8 Answers 8

4
$\begingroup$

When $x>0$ we have

$$\int \frac{dx}{x^2\sqrt{x^2+1}} = \int \frac{dx}{x^3\sqrt{1+\frac{1}{x^2}}}$$

$$ = \int \frac{d\left(\frac{1}{x^2}\right)}{-2\sqrt{1+\frac{1}{x^2}}} = -\sqrt{1+\frac{1}{x^2}}+C$$

Pulling the $x^{-2}$ factor out allows us to say that the antiderivative is

$$-\frac{\sqrt{x^2+1}}{x} + C$$

for all $x\neq 0$.

$\endgroup$
2
  • $\begingroup$ You didn't work out for $x<0$? $\endgroup$ Commented Aug 10 at 14:45
  • $\begingroup$ @Integreek don't need to. You can see that when the final answer before pulling out the factor would have had an additional minus sign, we would represent that as a hidden factor of $\operatorname{sgn}(x)$. Pulling out the factor from the square root, the denominator becomes $\operatorname{sgn}(x)\cdot\sqrt{x^2} = \operatorname{sgn}(x)\cdot|x| = x$ $\endgroup$ Commented Aug 11 at 3:21
2
$\begingroup$

Here's how to get to the finish line using the substitution.

From $x = \tan \theta$, you can construct a right triangle whose hypotenuse has length $\sqrt{1 + x^2}.$ (This is just from using Pythagoras and your basic trigonometric ratios). Now based on that picture you've drawn. $\sin \theta = \ldots$ (finish this).

$\endgroup$
1
$\begingroup$

$$ \int \frac{1}{x^2\sqrt{x^2+1}}dx = [u =-\frac{1}{x}] = \int \frac{u}{\sqrt{1+u^{2}}}du = \sqrt{1+u^{2}} +C= -\frac{\sqrt{x^2+1}}{x}+C. $$

$\endgroup$
2
  • $\begingroup$ I thought about this way too. $\endgroup$ Commented Sep 9, 2023 at 5:42
  • $\begingroup$ But there is a sign problem... $\endgroup$ Commented Sep 9, 2023 at 5:54
1
$\begingroup$

Another possible approach based on hyperbolic functions: \begin{align*} \int\frac{\mathrm{d}x}{x^{2}\sqrt{1 + x^{2}}} & = \int\frac{\mathrm{d}(\sinh(u))}{\sinh^{2}(u)\sqrt{1 + \sinh^{2}(x)}}\\\\ & = \int\frac{\cosh(u)}{\sinh^{2}(u)\cosh(u)}\mathrm{d}u\\\\ & = \int\frac{\mathrm{d}u}{\sinh^{2}(u)}\\\\ & = \int\operatorname{csch}^{2}(u)\mathrm{d}u\\\\ & = -\coth(u) + C\\\\ & = -\frac{\cosh(u)}{\sinh(u)} + C\\\\ & = -\frac{\sqrt{1 + \sinh^{2}(u)}}{\sinh(u)} + C\\\\ & = -\frac{\sqrt{1 + x^{2}}}{x} + C \end{align*}

$\endgroup$
1
$\begingroup$

Substitute $y= \sqrt{x^2+1} $. Then, $y’=\frac xy$ \begin{align} \int &\frac{dx}{x^2\sqrt{x^2+1}} = \int \frac{dx}{x^2 y} =\int\left(y-\frac{x^2}y\right)\frac{dx}{x^2}\\ &=\int\left(\frac{y}{x^2}-\frac{y’}x\right)dx =-\int d\left( \frac yx \right)=-\frac yx+C \end{align}

$\endgroup$
0
$\begingroup$

You got: $I=-\dfrac{1}{\sin \theta}+C$, where $\theta = \arctan x$.

Hence, it is: $$I=-\frac{1}{\sin(\arctan x)}+C= -\frac{\dfrac{1}{1}}{\dfrac{\tan(\arctan x)}{\sqrt{1+\tan^2(\arctan x)}}}+C=\boxed{-\frac{\sqrt{1+x^2}}{x}+C}.$$

$\endgroup$
0
$\begingroup$

My Solution is similar to Hunaphu's solution. I considered sign (negative/positive) situations.

İf we sub $x=\frac1t$ in $\int\frac{dx}{x^2\sqrt{x^2+1}}$ we get, $\begin{align}\int-\frac{|t|}{\sqrt{t^2+1}}dt&=\int-sgn(t)\frac{t}{\sqrt{t^2+1}}dt\\ &=-sgn(t)\sqrt{t^2+1}+c\\ &=-sgn(t)\frac{\sqrt{x^2+1}}{|x|}+c\\ &=-\frac{sgn(t)}{sgn(x)}\frac{\sqrt{x^2+1}}{x}+c\\ &=-\frac{\sqrt{x^2+1}}{x}+c \end{align}$

Since $sgn(t)=sgn(x)$.

$\endgroup$
0
$\begingroup$

You can directly read off $$ \csc\theta = \frac{\text{hypotenuse}}{\text{opposite side}}$$ as a trigonometric ratio in a right triangle with proper sign:

enter image description here

$\endgroup$

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.