Write a Möbius transformation that maps the region $D = \{ z \in \mathbb{C} \mid |z| \geq 1 \land |z + i| \leq \sqrt{2} \}$ to the region $D' = \{ z \in \mathbb{C} \mid \frac{\pi}{4} \leq \arg(z) \leq \frac{\pi}{2} \}$.
Attempt: The region $ D = \{ z \in \mathbb{C} \mid |z| \geq 1 \land |z + i| \leq \sqrt{2} \} $ is defined by points outside or on the unit circle and inside or on a circle centered at $ -i $ with radius $ \sqrt{2} $. To find a Möbius transformation mapping $ D $ to the region $ D' = \{ z \in \mathbb{C} \mid \frac{\pi}{4} \leq \arg(z) \leq \frac{\pi}{2} \} $, where $ D' $ consists of points with argument between $ \frac{\pi}{4} $ and $ \frac{\pi}{2} $ measured counterclockwise from the positive real axis, I consider the transformation $ T(z) = \frac{z + i}{z - i} $. This Möbius transformation maps the unit circle to the real axis and the circle $ |z + i| = \sqrt{2} $ to a line segment along the imaginary axis. Specifically, it maps $ |z| \geq 1 $ (outside the unit circle) to angles $ \arg(w) = \frac{\pi}{2} $ (points on the positive imaginary axis) and $ |z + i| \leq \sqrt{2} $ (inside the circle centered at $ -i $) to angles $ \arg(w) \leq \frac{\pi}{2} $. Therefore, is this the correct Möbius transformation?