Let's assume that a linear operator in V space in basis (e1, e2, e3, e4) has a matrix:
$A = \begin{pmatrix} 0&1&2&3\\5&4&0&-1\\3&2&0&3\\6&1&-1&7 \end{pmatrix}$
What look matrix of this operator will have in bases $(e_2, e_1, e_3, e_4)$ and $(e_1, e_1+e_2, e_1+e_2+e_3, e_1+e_2+e_3+e_4)$ ?
I see that this equation should have a look like:
$\begin{pmatrix} e_1\\e_2\\e_3\\e_4 \end{pmatrix}$ * $\begin{pmatrix} 0&1&2&3\\5&4&0&-1\\3&2&0&3\\6&1&-1&7 \end{pmatrix}$ = $\begin{pmatrix}e_2 \\ e_1 \\ e_3 \\ e_4\end{pmatrix}$
but what's next?