1
$\begingroup$

Let $T : P_{2}(C) \to C^3$ be a linear transformation such that $$T(a + bx + cx^2) = (a, a + b, a + b + c)$$

Find the matrix representation $[T]$ relative to the standard bases.

If standard basis for $R^3$,

$T(1,0,0)=(1,0,0)$

$T(0,1,0)=(1,1,0)$

$T(0,0,1)=(1,1,1)$

Therefore, $[T]$ = \begin{bmatrix}1&0&0\\1&1&0\\1&1&1\end{bmatrix}

But it is the same with $C^3$ ?

$\endgroup$
4
  • 1
    $\begingroup$ Welcome to MathSE. Can you show your attempts for to solve this problem? $\endgroup$ Commented Dec 17, 2020 at 16:10
  • 1
    $\begingroup$ If standard basis for $R^3$ $T(1,0,0) = (1, 0, 0)$ $T(0,1,0) = (1, 1, 0)$ $T(0,0,1) = (1, 1, 1)$ Therefore, $[T] = \begin{bmatrix}1&0&0\\1&1&0\\1&1&1\end{bmatrix} $ $\endgroup$ Commented Dec 17, 2020 at 16:17
  • 1
    $\begingroup$ Ok, please add that attempt in your post. Also, what's mean $C$? Is $C$ the complex field? $\endgroup$ Commented Dec 17, 2020 at 16:27
  • $\begingroup$ yes complex field $\endgroup$ Commented Dec 17, 2020 at 16:30

1 Answer 1

1
$\begingroup$

First, we need to analyze two case:

  1. $\mathbb{C}_{\mathbb{R}}$: Complex space over $\mathbb{R}$.
  2. $\mathbb{C}_{\mathbb{C}}$: Complex space over $\mathbb{C}$.

Then, the answer dependes if in your problem $T:P_{2}(\mathbb{C}_{\mathbb{C}})\to \mathbb{C}_{\mathbb{C}}^{3}$ or $T:P_{2}(\mathbb{C}_{\mathbb{R}})\to \mathbb{C}_{\mathbb{R}}^{3}$.

Suppose for example the second case, also is well-know that $\mathbb{C}_{\mathbb{R}}\cong \mathbb{R}^{2}$ and $\mathbb{C}_{\mathbb{R}}^{3}\cong \mathbb{R}^{6}$. (In general $\mathbb{C}_{\mathbb{R}}^{n} \cong \mathbb{R}^{2n}$). So, we have that $[T]_{\beta_{1}\to \beta_{2}}$ be a matrix of order $\dim(\mathbb{C}_{\mathbb{R}}^{3})\times \dim(P_{2}(\mathbb{C}_{\mathbb{R}}))$.

Now, in the first case: $T:P_{2}(\mathbb{C}_{\mathbb{C}})\to \mathbb{C}_{\mathbb{C}}^{3}$, we have that your approach is correct. Indeed $$[T]=\begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1\end{pmatrix}$$

$\endgroup$

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.