A differentail equations exercise asks for the eigenvectors of $$\begin{bmatrix} 3&2&4\\ 2&0&2\\ 4&2&3 \end{bmatrix}.$$
The answer in the back of the book gives $$\begin{bmatrix} 2\\ 1\\ 2 \end{bmatrix}, \begin{bmatrix} 1\\ 0\\ -1 \end{bmatrix}, \begin{bmatrix} 1\\ -4\\ 1 \end{bmatrix};$$ the first two have eigenvalues $-1$, the second has eigenvalue $8$. Mathematica confirms this:
A = {{3, 2, 4}, {2, 0, 2}, {4, 2, 3}}; v2 = {{2, 1, 2}, {1, 0, -1}, {1, -4, 1}} Table[A.v2[[i]], {i, 1, 3}] {{2, 1, 2}, {1, 0, -1}, {1, -4, 1}} {{16, 8, 16}, {-1, 0, 1}, {-1, 4, -1}} However, Mathematica gives the eigenvectors as $$\begin{bmatrix} 2\\ 1\\ 2 \end{bmatrix}, \begin{bmatrix} -1\\ 0\\ 1 \end{bmatrix}, \begin{bmatrix} 1\\ -2\\ 0 \end{bmatrix};$$ and then confirms them as eigenvectors:
A = {{3, 2, 4}, {2, 0, 2}, {4, 2, 3}}; v = Eigenvectors[A] Table[A.v[[i]], {i, 1, 3}] {{2, 1, 2}, {-1, 0, 1}, {-1, 2, 0}} {{16, 8, 16}, {1, 0, -1}, {1, -2, 0}} Why is this happening?