1
$\begingroup$

$$A=\begin{bmatrix} i & 0 & 0\\ 0 & 0 & i\\ 0&i&0 \end{bmatrix}$$ The eigenvalues are i and -i where $i=(-1)^{1/2}$. The eigenvectors corresponding to the eigenvalue i calculated by Mathematica are $\begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix}$ and $\begin{bmatrix} 0\\ 1\\ 1 \end{bmatrix}$. However, I want to ask if I can replace $\begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix}$ with $\begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix}$ and declare $\begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix}$ and $\begin{bmatrix} 0\\ 1\\ 1 \end{bmatrix}$ as the two eigenvectors since both of these vectors satisfy the equation $Ax=i x$ and form a linearly independent set.

$\endgroup$
1
  • $\begingroup$ Indeed, you can. $\endgroup$ Commented Oct 14, 2023 at 11:07

1 Answer 1

2
$\begingroup$

Yes!, you can add two eigenvectors, since the Eigenspace is a subspace.

Indeed, the Eigenspace corresponding to the eigenvalue $i$ is, $E_i=\{x : (A-iI)x=0\}$ where $x=\begin{pmatrix} x_1 & x_2 & x_3 \end{pmatrix}^T $

Solving $(A-iI)x=0$, we get $x_2=x_3$

So, $$E_i=\Bigg\{x_1 \begin{pmatrix} 1\\ 0 \\ 0 \end{pmatrix}+x_2 \begin{pmatrix} 0\\ 1 \\ 1 \end{pmatrix}: x_1,x_2 \in F \Bigg\} $$

By choosing $x_1=x_2=1$, you get the mentioned vector of $1$'s !

$\endgroup$
1
  • $\begingroup$ So can I use {1,1,1} and {0,1,1} as the 2 eigenvectors of the matrix for eigenvalue i? $\endgroup$ Commented Oct 15, 2023 at 15:40

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.