3
$\begingroup$

To begin with the $d\theta$ on the top of the fraction threw me off but I'm assuming it's just another way of representing:

$${\int}\frac{1}{9\cos^2\theta+\sin^2\theta}\,d\theta$$

I tried working backwards

$$\frac{d}{d\theta}\tan\theta=\sec^2\theta\,\,\,\,{\Rightarrow}\,\,\,\,d\,\tan\theta=\sec^2\theta\,d\theta$$ $${\Rightarrow}\,{\int}\frac{\sec^2\theta\,d\theta}{9+\tan^2\theta}$$

$$\tan\theta=\frac{\sin\theta}{\cos\theta}\,\,\,\,{\Rightarrow}\,\,\,\,\tan^2\theta=\frac{\sin^2\theta}{\cos^2\theta}$$

$${\Rightarrow}\,{\int}\frac{\sec^2\theta\,d\theta}{\left(9+\dfrac{\sin^2\theta}{\cos^2\theta}\right)}$$

$$9=\frac{9\cos^2\theta}{\cos^2\theta}\,\,\,\,{\Rightarrow}\,\,\,\,{\int}\frac{\sec^2\theta\,d\theta}{\left(\dfrac{9\cos^2\theta}{\cos^2\theta}+\dfrac{\sin^2\theta}{\cos^2\theta}\right)}\,\,\,\,{\Rightarrow}\,\,\,\,{\int}\frac{\sec^2\theta\,d\theta}{\left(\dfrac{9\cos^2\theta+\sin^2\theta}{\cos^2\theta}\right)}$$

$${\Rightarrow}\,\,\,\,{\int}\frac{\color{red}{\cos^2\theta\,\sec^2\theta}\,d\theta}{9\cos^2\theta+\sin^2\theta}$$

Now I have to prove that $$\cos^2\theta\,\sec^2\theta=1$$ but I don't think it is... What have I done wrong? Regards Tom

$\endgroup$
4
  • 5
    $\begingroup$ Define $\cos\theta,\sec\theta$ $\endgroup$ Commented Apr 8, 2015 at 11:49
  • 2
    $\begingroup$ $sec^2\theta=\frac{1}{cos^2\theta} \implies cos^2\theta sec^2\theta = 1$ $\endgroup$ Commented Apr 8, 2015 at 11:56
  • $\begingroup$ @Waffle Could you please convert your comment into an answer so this question can be removed from the "Unanswered" queue? $\endgroup$ Commented Nov 15, 2018 at 5:14
  • $\begingroup$ @Waffle Thanks! $\endgroup$ Commented Nov 16, 2018 at 1:00

2 Answers 2

2
$\begingroup$

$\sec^2\theta = \frac{1}{\cos^2\theta} \implies \cos^2\theta\sec^2\theta = \frac{\cos^2\theta}{\cos^2\theta} = 1$

$\endgroup$
0
$\begingroup$

An alternative method. Let $$I={\int}\frac{1}{9\cos^2x+\sin^2x}\,dx$$ Dividing the denominator and numerator by $\cos^2x$ we have $$I=\int\frac{\sec^2x}{9+\tan^2x}dx$$ Make the substitution $t=\tan x$, so that $\sec^2x~dx=dt,$ and we are done.

$\endgroup$

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.