T is a linear transformation represented as $\left(\begin{array}{ccc}1 & 1 & 0 \\0 & 2 & 0 \\3 & 1 & 0 \\0 & 1 & 1\end{array}\right)$ w.r.t the standard basis.
Now find a representation for $T$ w.r.t bases $(1,0,0)^t, (0,1,1)^t, (1,0,1)^t$ for $R^3$ and $(1,0,0,0)^t, (0,1,1,0)^t, (0,0,1,0)^t, (1,0,0,1)^t$ for $R^4$.
Work so far:
Let $M = \left(\begin{array}{ccc}1 & 0 & 1 \\0 & 1 & 0 \\0 & 1 & 1\end{array}\right)$.
New $T_n$ = $T*M$. If I'm not mistaken this gives us $T$ w.r.t a new basis in $R^3$ (please correct, if wrong). How do I get $T$ w.r.t new basis in $R^4$?