Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation, given $B=((1,1,1),(1,1,0),(1,0,1))$ a base of $\mathbb{R}^3$. Suppose $(1,0,0) \in\ker T$.
$$[T]_{B} = \left(\begin{array}{ccc} 1 & 0 & 1\\ 3 & 2 & 1\\ 2 & 1 & 1 \end{array}\right).$$
Find a base for $\operatorname{Im}T$.
I know that the columns of $[T]_B$ are the coordinates vectors of the vectors which span $\operatorname{Im}T$, but I don't understand how to find a base for $\operatorname{Im}T$ using that information (and of course, using the fact that dim $\operatorname{Im}T=2$).