Calculate Inverse Discrete Time Fourier Transform of the following where $|a| < 1$:
$$ X(e^{j\omega}) = \frac{1-a^2}{(1-ae^{-j\omega})(1-ae^{j\omega})} $$
Plugging this directly into the IDTFT equation, I get:
\begin{align*} x[n] &= \frac{1}{2\pi} \int_{-\pi}^\pi X(e^{j\omega}) e^{j \omega n} d\omega \\ x[n] &= \frac{1}{2\pi} \int_{-\pi}^\pi \frac{(1-a^2)e^{j \omega n}}{(1-ae^{-j\omega})(1-ae^{j\omega})} d\omega \\ \end{align*}
I am having trouble getting started. I'm not sure what to try. None of the standard Fourier Transform property laws seem to directly apply to this.
(This is problem 2.57 from Oppenheim textbook on Discrete Time Signal Processing)