2
$\begingroup$

I am wondering if there is a residue-trick for computing $\int_{0}^{\infty}e^{-x^{2}}\cos(x^{2})\mathrm{d}x$ without having to go through computing the Gaussian residue integral.

For practice here is the Gaussian way, any corrections are appreciated. We will prove $\int_{\mathbb{R}} e^{-x^{2}c}\mathrm{d}x=\sqrt{\frac{\pi }{c}}$ with $\text{Re}(c)>0$.

Step 1

Following the same procedure as in http://www.math.uconn.edu/~kconrad/blurbs/analysis/gaussianintegral.pdf

we need a $\tau$ so $e^{2\tau^{2}c}=1$ to ensure $d(0)=d(\tau)$ and thus $f(z)-f(z+\tau)=e^{-z^{2}c}$. Thus, $$\tau=\sqrt{\frac{\pi }{2c}}(1+i).$$

So $e^{-\tau^{2}c}=-1$ and thus $f(z)=\dfrac{e^{-z^{2}c}}{1+e^{-2c\tau z}}$.

Step 2

Because $\tau=\sqrt{\frac{\pi }{2c}}(1+i)=\sqrt{\frac{\pi}{r}}\cos(\frac{\pi }{4}-\frac{\theta}{2})+i\sqrt{\frac{\pi}{r}}\sin(\frac{\pi }{4}-\frac{\theta}{2})$, where $c=re^{i\theta}$, for the contour we choose height $ib=i\sqrt{\frac{\pi}{r}}\sin(\frac{\pi }{4}-\frac{\theta}{2})$. Then the pole $\frac{\tau}{2}$ is inside it.

Step 3

The residue yields

$$\int_{\text{Rectangle}} \dfrac{e^{-z^{2}c}}{1+e^{-2c\tau z}}\mathrm{d}z=2\pi i \lim_{z\to \frac{\tau}{2}} \dfrac{e^{-z^{2}c}}{(-2c\tau)e^{-2c\tau z}}=\sqrt{\frac{\pi }{c}},$$

which is what we expected.

Step 4

On the other hand, $$\int_{\mathbb{R}} f(x)\mathrm{d}x-\int_{-\infty+ib}^{\infty+ib}f(z)\mathrm{d}z=\int_{\mathbb{R}} f(x)\mathrm{d}x-\int_{-\infty}^{\infty}f(x+ib)\mathrm{d}x$$

by rewriting $ib=\tau-\text{Re}(\tau)$ and translating we obtain

$$=\int_{\mathbb{R}} f(x)\mathrm{d}x-\int_{-\infty}^{\infty}f(x+\tau)\mathrm{d}x=\int e^{-x^{2}c}\mathrm{d}x.$$

Therefore, in our case $c=1\pm i$ and in turn

$$\int_{0}^{\infty}e^{-x^{2}}\cos(x^{2})\mathrm{d}x=\frac{1}{4}\left(\sqrt{\frac{\pi }{1+i}}+\sqrt{\frac{\pi }{1-i}})=\frac{\sqrt{\pi}}{2\sqrt[4]{2}}(\cos\left(\frac{\pi}{8}\right)\right).$$

$\endgroup$
1
  • $\begingroup$ The substitution $y=x^2$ turns it into the Mellin transform $$\mathcal{M}_y\left[\frac{1}{2}\, \cos(y)\, e^{-y}\right](s)=\int\limits_0^{\infty} \frac{1}{2}\, \cos(y)\, e^{-y}\, y^{s-1} \, dy=2^{-\frac{s}{2}-1} \cos\left(\frac{\pi s}{4}\right)\, \Gamma(s)\,,\quad\Re(s)>0$$ evaluated at $s=\frac{1}{2}$ which might lead to a different approach. $\endgroup$ Commented Apr 4 at 2:25

1 Answer 1

2
$\begingroup$

A way simpler approach: $$ \int_{0}^{+\infty}e^{-x^2}\cos(x^2)\,dx = \text{Re}\int_{0}^{+\infty}e^{(i-1)x^2}\,dx =\text{Re}\left(\frac{\sqrt{\pi}}{2\sqrt{1-i}}\right).$$ $\cos\frac{\pi}{8}=\frac{1}{2}\sqrt{2+\sqrt{2}}$ appears since $1-i=\sqrt{2}\cdot e^{-\pi i/4}$.

$\endgroup$
1
  • $\begingroup$ not really, you assumed what I proved. My question is silly because a simpler way, would imply a simpler way for computing the Gaussian integral. $\endgroup$ Commented Apr 14, 2016 at 0:12

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.