10
$\begingroup$

What's the best way to invert a simple symmetric tridiagonal Toeplitz matrix of the following form?

$$ A = \begin{bmatrix} 1 & a & 0 & \ldots & \ldots & 0 \\\ a & 1 & a & \ddots & & \vdots \\\ 0 & a & 1 & \ddots & \ddots& \vdots \\\ \vdots & \ddots & \ddots & \ddots & a & 0\\\ \vdots & & \ddots & a & 1 & a\\\ 0 & \ldots & \ldots & 0 & a & 1 \end{bmatrix} $$

$\endgroup$

1 Answer 1

13
$\begingroup$

Usually, an eigendecomposition is the least efficient way to generate the inverse of a matrix, but in the case of the symmetric tridiagonal Toeplitz matrix, we have the nice eigendecomposition $\mathbf A=\mathbf V\mathbf D\mathbf V^\top$, where $$\mathbf D=\mathrm{diag}\left(1+2a\cos\frac{\pi}{n+1},\dots,1+2a\cos\frac{k\pi}{n+1},\dots,1+2a\cos\frac{n\pi}{n+1}\right)$$ and $\mathbf V$ is the symmetric and orthogonal matrix whose entries are $$v_{j,k}=\sqrt{\frac2{n+1}}\sin\frac{\pi jk}{n+1}$$ Thus, to generate the inverse, use $\mathbf A^{-1}=\mathbf V\mathbf D^{-1}\mathbf V^\top$, and inverting a diagonal matrix is as easy as reciprocating the diagonal entries.

$\endgroup$

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.