Assume a matrix in this form:
$$ \begin{bmatrix} b & c & 0 & \dots & 0 & a \\ a & b & c & 0 & \dots & 0 \\ 0 & a & b & c & \ddots & \vdots\\ \vdots & \ddots & \ddots & \ddots & \ddots. & 0 \\ 0 & \cdots & 0 & a & b & c \\ c & 0 & \cdots & 0 & a & b \\ \end{bmatrix}_{n \times n} $$
I want to check that the eigenvalues are of the form $$ \lambda_p = ae^{-2\pi ip/n}+b+ce^{2\pi ip/n}$$ with associated eigenvector $$ v_p = v_{p,j} = e^{-2\pi ipj /n}$$ I only find information about determinant of tridiagonal Toeplitz matrix but not for this case. Any help is appreciated!