I am working on a solution for an intgeral that leads to a series that I am stuck at. Below is what I have done and how I got to the final series. Any ideas on how to solve the series at the end?
\begin{equation} \int_{-\infty}^{x} e^{ax} \, {_{1}}F_{1}(-\alpha;-\beta;-\lambda x) \ \mathrm{d}x \quad \text{for} \, x\leq 0 \end{equation}
where, $a,\alpha,\beta,\lambda>0$.
Substitute $u=-ax\to$ $\mathrm{d}u = -a \ \mathrm{d}x$
\begin{equation} a^{-1}\int_{-u/a}^{\infty} e^{-u} \, {_{1}}F_{1}(-\alpha;-\beta;\tfrac{\lambda}{a} u) \ \mathrm{d}u \end{equation}
At this point I could not find closed form solution for the integral so I wrote the confluent hypergeometric function in its summation representation.
\begin{equation} a^{-1}\sum_{j=0}^{\infty}\frac{(-\alpha)_{j}}{(-\beta)_{j}\, j!} \left(\frac{\lambda}{a}\right)^{j}\int_{-u/a}^{\infty} e^{-u} \, u^{j} \ \mathrm{d}u \end{equation}
where, $(x)_{j}$ is the Pochhammer symbol.
Since $u=-ax$, and $x\leq 0$, this means $-u/a\geq 0$ and the integral is a upper-incomplete gamma function.
\begin{equation} a^{-1}\sum_{j=0}^{\infty}\frac{(-\alpha)_{j}}{(-\beta)_{j}\, j!} \left(\frac{\lambda}{a}\right)^{j}\ \Gamma(j+1,x) \end{equation}
I do not know how to get past this point. An ideas on how to solve the sum?
From wolframalpha I found the following definition that could also prove to be useful:
\begin{equation} \gamma(m,x) = m^{-1} x^{m} \, {_{1}}F_{1}(m; m+1; -x) \end{equation}
where, $\Gamma(m) = \Gamma(m,x)+\gamma(m,x)$.
UPDATE
If $\alpha$ and $\beta$ are integers then a solution can be found through integration by parts. The solution is:
\begin{equation} a^{-1}\sum_{k=0}^{\alpha} \left(\frac{\lambda}{a}\right)^{k} e^{ax}\, {_{1}}F_{1}(-\alpha+k;-\beta+k,-\lambda x) \end{equation}
I am looking for the case where $\alpha$ and $\beta$ are not integers.