84
$\begingroup$

I have seen the Fresnel integral

$$\int_0^\infty \sin x^2\, dx = \sqrt{\frac{\pi}{8}}$$

evaluated by contour integration and other complex analysis methods, and I have found these methods to be the standard way to evaluate this integral. I was wondering, however, does anyone know a real analysis method to evaluate this integral?

$\endgroup$
2

10 Answers 10

75
$\begingroup$

Aside from some trigonometric substitutions and identities, we will need the following identity, which can be shown using integration by parts twice: $$ \int_0^{\infty}\cos(\alpha t)e^{-\lambda t}\,\mathrm{d}t=\frac{\lambda}{\alpha^2+\lambda^2}\tag{1} $$ We will also use the standard arctangent integral: $$ \int_0^\infty\frac{\mathrm{d}t}{a^2+t^2}=\frac\pi{2a}\tag{2} $$ Now $$ \begin{align} &\left(\int_0^\infty\color{#C00000}{\sin}(x^2) e^{-\lambda x^2}\,\mathrm{d}x\right)^2\\ &=\int_0^\infty\int_0^\infty \color{#C00000}{\sin}(x^2)\color{#C00000}{\sin}(y^2) e^{-\lambda(x^2+y^2)}\,\mathrm{d}y\,\mathrm{d}x\tag{3.1}\\ &=\frac12\int_0^\infty\int_0^\infty \left(\cos(x^2-y^2) \color{#FF0000}{-}\cos(x^2+y^2)\right) e^{-\lambda(x^2+y^2)}\,\mathrm{d}y\,\mathrm{d}x\tag{3.2}\\ &=\frac12\int_0^{\pi/2}\int_0^\infty \left(\cos(r^2\cos(2\phi)) \color{#FF0000}{-}\cos(r^2)\right)e^{-\lambda r^2} \,r\,\mathrm{d}r\,\mathrm{d}\phi\tag{3.3}\\ &=\frac14\int_0^{\pi/2}\int_0^\infty \left(\cos(s\cos(2\phi)) \color{#FF0000}{-}\cos(s)\right) e^{-\lambda s} \,\mathrm{d}s\,\mathrm{d}\phi\tag{3.4}\\ &=\frac14\int_0^{\pi/2}\left(\frac{\lambda}{\cos^2(2\phi)+\lambda^2} \color{#FF0000}{-}\frac{\lambda}{1+\lambda^2}\right)\,\mathrm{d}\phi\tag{3.5}\\ &=\frac12\int_0^{\pi/4} \frac{\lambda}{\cos^2(2\phi)+\lambda^2}\,\mathrm{d}\phi \color{#FF0000}{-}\frac{\lambda\pi/8}{1+\lambda^2}\tag{3.6}\\ &=\frac14\int_0^{\pi/4} \frac{\lambda\,\mathrm{d}\tan(2\phi)} {1+\lambda^2+\lambda^2\tan^2(2\phi)} \color{#FF0000}{-}\frac{\lambda\pi/8}{1+\lambda^2}\tag{3.7}\\ &=\frac14\int_0^\infty\frac{\mathrm{d}t}{1+\lambda^2+t^2} \color{#FF0000}{-}\frac{\lambda\pi/8}{1+\lambda^2}\tag{3.8}\\ &=\frac{\pi/8}{\sqrt{1+\lambda^2}} \color{#FF0000}{-}\frac{\lambda\pi/8}{1+\lambda^2}\tag{3.9} \end{align} $$

$(3.1)$ change the square of the integral into a double integral

$(3.2)$ use $2\color{#C00000}{\sin}(A)\color{#C00000}{\sin}(B)=\cos(A-B)\color{#FF0000}{-}\cos(A+B)$

$(3.3)$ convert to polar coordinates

$(3.4)$ substitute $s=r^2$

$(3.5)$ apply $(1)$

$(3.6)$ pull out the constant and apply symmetry to reduce the domain of integration

$(3.7)$ multiply numerator and denominator by $\sec^2(2\phi)$

$(3.8)$ substitute $t=\lambda\tan(2\phi)$

$(3.9)$ apply $(2)$

Finally, take the square root of both sides of $(3)$ and let $\lambda\to0^+$ to get $$ \int_0^\infty\color{#C00000}{\sin}(x^2)\,\mathrm{d}x=\sqrt{\frac\pi8}\tag{4} $$

Addendum

I just noticed that the same proof works for $$ \int_0^\infty\cos(x^2)\,\mathrm{d}x=\sqrt{\frac\pi8}\tag{5} $$ if each red $\color{#C00000}{\sin}$ is changed to $\cos$ and each red $\color{#FF0000}{-}$ sign is changed to $+$.

$\endgroup$
9
  • $\begingroup$ @Sasha: this answer should be better than my last :-) $\endgroup$ Commented Sep 3, 2012 at 3:27
  • $\begingroup$ I love this method! It is a novel application of the polar coordinate transform for me. $\endgroup$ Commented Sep 4, 2012 at 6:49
  • $\begingroup$ This is nice that only standard "freshmen calculus" knowledge is used. $\endgroup$ Commented Oct 25, 2013 at 1:51
  • 4
    $\begingroup$ Actually, justification of $\lambda\rightarrow 0$ would be something nontrivial. $\endgroup$ Commented Nov 6, 2013 at 9:23
  • $\begingroup$ I mean in the integral, explaining why the limit of LHS is the value at 0. $\endgroup$ Commented Nov 6, 2013 at 9:29
35
$\begingroup$

Let $u=x^2$, then $$ \int_0^\infty \sin(u) \frac{\mathrm{d} u}{2 \sqrt{u}} $$ The real analysis way of evaluating this integral is to consider a parametric family: $$\begin{eqnarray} I(\epsilon) &=& \int_0^\infty \frac{\sin(u)}{2 \sqrt{u}} \mathrm{e}^{-\epsilon u} \mathrm{d} u = \frac{1}{2} \sum_{n=0}^\infty \frac{(-1)^n}{(2n+1)!}\int_0^\infty u^{2n+\frac{1}{2}} \mathrm{e}^{-\epsilon u} \mathrm{d} u \\ &=& \frac{1}{2} \sum_{n=0}^\infty \frac{(-1)^n}{(2n+1)!} \Gamma\left(2n+\frac{3}{2}\right) \epsilon^{-\frac{3}{2}-2n} \\ &=& \frac{1}{2 \epsilon^{3/2}} \sum_{n=0}^\infty \left(-\frac{1}{\epsilon^2}\right)^n\frac{\Gamma\left(2n+\frac{3}{2}\right)}{\Gamma\left(2n+2\right)} \\ &\stackrel{\Gamma-\text{duplication}}{=}&\frac{1}{2 \epsilon^{3/2}} \sum_{n=0}^\infty \left(-\frac{1}{\epsilon^2}\right)^n\frac{\Gamma\left(n+\frac{3}{4}\right)\Gamma\left(n+\frac{5}{4}\right)}{\sqrt{2} n! \Gamma\left(n+\frac{3}{2}\right)} \\ &=& \frac{1}{(2 \epsilon)^{3/2}} \frac{\Gamma\left(\frac{3}{4}\right)\Gamma\left(\frac{5}{4}\right)}{\Gamma\left(\frac{3}{2}\right)} {}_2F_1\left(\frac{3}{4}, \frac{5}{4}; \frac{3}{2}; -\frac{1}{\epsilon^2}\right) \\ &\stackrel{\text{Euler integral}}{=}& \frac{1}{(2 \epsilon)^{3/2}} \frac{\Gamma\left(\frac{3}{4}\right)\Gamma\left(\frac{5}{4}\right)}{\Gamma\left(\frac{3}{2}\right)} \frac{1}{\operatorname{B}\left(\frac{5}{4}, \frac{3}{2}-\frac{5}{4}\right)} \int_0^1 x^{\frac{5}{4}-1} (1-x)^{\frac{3}{2}-\frac{5}{4} -1} \left(1+\frac{x}{\epsilon^2}\right)^{-3/4} \mathrm{d} x \\ &=& \frac{1}{2^{3/2}} \frac{\Gamma\left(\frac{3}{4}\right)\Gamma\left(\frac{5}{4}\right)}{\Gamma\left(\frac{3}{2}\right)} \frac{\Gamma\left(\frac{3}{2}\right)}{\Gamma\left(\frac{5}{4}\right) \Gamma\left(\frac{1}{4}\right)} \int_0^1 x^{\frac{5}{4}-1} (1-x)^{\frac{1}{4} -1} \left(\epsilon^2+x\right)^{-3/4} \mathrm{d} x \end{eqnarray} $$ Now we are ready to compute $\lim_{\epsilon \to 0} I(\epsilon)$: $$\begin{eqnarray} \lim_{\epsilon \to 0} I(\epsilon) &=& \frac{1}{2^{3/2}} \frac{\Gamma\left(\frac{3}{4}\right)}{\Gamma\left(\frac{1}{4}\right)} \int_0^1 x^{\frac{1}{2}-1} \left(1-x\right)^{\frac{1}{4}-1} \mathrm{d} x = \frac{1}{2^{3/2}} \frac{\Gamma\left(\frac{3}{4}\right)}{\Gamma\left(\frac{1}{4}\right)} \frac{\Gamma\left(\frac{1}{2}\right) \Gamma\left(\frac{1}{4}\right)}{\Gamma\left(\frac{3}{4}\right)} \\ &=& \frac{1}{2^{3/2}} \Gamma\left(\frac{1}{2}\right) = \frac{1}{2} \sqrt{\frac{\pi}{2}} \end{eqnarray} $$

$\endgroup$
4
  • 1
    $\begingroup$ It seems that you have assumed $\epsilon > 1$ in the intermediate steps, and identified $I(\epsilon)$ with the last line for all $\epsilon > 0$ by analytic continuation argument. Is it right? $\endgroup$ Commented Aug 28, 2012 at 4:28
  • 7
    $\begingroup$ The original integral $I(\epsilon)$ is defined for $\epsilon>0$ and is a continuous function of $\epsilon$. The convergence of the series requires $\epsilon>1$, but the Euler integral now converges for $\epsilon>0$. By the principle of analytic continuation $I(\epsilon)$ equals to the Euler integral. $\endgroup$ Commented Aug 28, 2012 at 4:35
  • $\begingroup$ Thanks, now I clearly understood (except the step using hypergeometric series, which I barely know.) $\endgroup$ Commented Aug 28, 2012 at 4:41
  • 2
    $\begingroup$ Sorry I have to ask; in what sort of classes do you learn such material? I have only taken 2 basic analysis classes, and we learn a lot of theory but never do concrete examples such as these. $\endgroup$ Commented Mar 24, 2018 at 2:52
24
$\begingroup$

First, use the substitution $t = x^2$ to obtain

$$ I := \int_{0}^{\infty}\sin\left(x^2\right)\;dx=\int_{0}^{\infty}\frac{\sin t}{2\sqrt{t}}\;dt. $$

This integral converges conditionally, thus we make an integration by parts to obtain an absolutely convergent integral as follows:

$$I = \left[\frac{1-\cos t}{2\sqrt{t}}\right]_{0}^{\infty}-\int_{0}^{\infty}\left(\frac{d}{dt}\frac{1}{2\sqrt{t}}\right)(1 - \cos t)\;dt =\int_{0}^{\infty}\frac{1 - \cos t}{4t^{3/2}}\;dt.$$

Now, from gamma integral,

$$ \begin{align*} I &=\frac{1}{4\Gamma(3/2)}\int_{0}^{\infty}\left(\frac{\Gamma(3/2)}{t^{3/2}}\right)(1 - \cos t)\;dt \\ &=\frac{1}{4\Gamma(3/2)}\int_{0}^{\infty}\left(\int_{0}^{\infty}u^{1/2}e^{-tu}\;du\right)(1 - \cos t)\;dt\\ &=\frac{1}{4\Gamma(3/2)}\int_{0}^{\infty}\int_{0}^{\infty}u^{1/2}e^{-tu}(1 - \cos t)\;dudt \\ &=\frac{1}{2\sqrt{\pi}}\int_{0}^{\infty}\int_{0}^{\infty}u^{1/2}e^{-tu}(1 - \cos t)\;dudt, \end{align*} $$

where in the last line we have used the fact that $\Gamma(3/2) = \frac{1}{2}\sqrt{\pi}$, which is a direct consequence of the Gaussian integral. (Of course, this integral can be evaluated by a famous real analysis technique.) By Tonelli's theorem we can change the order of integration, and with the substitution $u = v^2$ we obtain

$$\begin{align*}I &=\frac{1}{2\sqrt{\pi}}\int_{0}^{\infty}\int_{0}^{\infty}u^{1/2}e^{-tu}(1 - \cos t)\;dtdu \\ &= \frac{1}{2\sqrt{\pi}} \int_{0}^{\infty}\frac{u^{1/2}}{u(1+u^2)}\;du = \frac{1}{2\sqrt{\pi}} \int_{0}^{\infty} \frac{2}{1+v^4} \; dv. \end{align*}$$

To evaluate the last integral, we use the following decomposition

$$ \frac{2}{1+v^4} = \frac{1+v^{-2}}{(v-v^{-1})^2-2} - \frac{1-v^{-2}}{(v+v^{-1})^2-2}. $$

Thus with the substitution $z = v - v^{-1}$ and $w = v + v^{-1}$, the integral becmes

$$\begin{align*}I &= \frac{1}{2\sqrt{\pi}} \left( \int_{0}^{\infty} \frac{d(v-v^{-1})}{(v-v^{-1})^2+2} - \int_{0}^{\infty} \frac{d(v+v^{-1})}{(v+v^{-1})^2-2} \right) \\ &= \frac{1}{2\sqrt{\pi}} \left( \int_{-\infty}^{\infty} \frac{dz}{z^2+2} - \int_{\infty}^{\infty} \frac{dw}{w^2-2} \right) = \frac{1}{2\sqrt{\pi}} \left( \frac{\pi}{\sqrt{2}} - 0 \right) = \sqrt{\frac{\pi}{8}}. \end{align*}$$

Only a slight modification of this argument immediately yields

$$ \int_{0}^{\infty} \cos\left(x^2\right) \; dx = \sqrt{\frac{\pi}{8}}. $$

$\endgroup$
3
  • $\begingroup$ @Sasha, Thank you. At first, I mistakenly posted a calculation for $\int_{0}^{\infty}\cos\left(x^2\right)\;dx$. When making amends in a hurry, I forgot fixing that. $\endgroup$ Commented Aug 28, 2012 at 4:02
  • $\begingroup$ This way of evaluating $\int_0^\infty \frac{dv}{1+v^4}$ is new to me. Another, maybe shorter way, would be use $v=\left(\frac{u}{1-u}\right)^{1/4}$: $$\int_0^\infty \frac{dv}{1+v^4} = \int_0^1 \frac{1}{4} (1-u)^{3/4-1} u^{1/4-1} \mathrm{d} u = \frac{1}{4} \operatorname{B}\left(\frac{1}{4}, \frac{3}{4}\right) = \frac{1}{4} \sqrt{2} \pi $$ $\endgroup$ Commented Aug 28, 2012 at 4:15
  • $\begingroup$ @Sasha, I also strongly agree that the use of beta function saves an enormous amount of effort. I also enjoy exploiting it. Here, however, I decided to try some sort of minimalism in a burden of background knowledge, to make a partial excuse for an alleged claim that real-analysis-approach is much harder. $\endgroup$ Commented Aug 28, 2012 at 4:24
20
$\begingroup$

Everybody who has not at least quick-browse throught some pages of Integral Kokeboken brochure (although in norwegian), I definitelly recommend to do so. In this gem one can find : (for improving redability I will adopt the methodology used by @robjohn, I will even use the same apriori identities)

$$ \begin{align} &\int_0^\infty\sin{(x^2)}\;\mathrm{d}x=\\ &=\frac{1}{2}\int_0^\infty\sin{u}\;\frac{\mathrm{d}u}{\sqrt{u}}\tag{1.1}\\ &=\frac{1}{2}\int_0^\infty\sin{u}\;\frac{2}{\sqrt{\pi}}\int_{0}^\infty e^{-uv^2}\;\mathrm{d}v\,\mathrm{d}u\tag{1.2} \\ &=\frac{1}{\sqrt{\pi}}\int_0^\infty\int_{0}^\infty e^{-uv^2}\sin{u}\;\mathrm{d}u \,\mathrm{d}v\tag{1.3}\\ &=\frac{1}{\sqrt{\pi}}\int_0^\infty\frac{\mathrm{d}v}{1+v^4}\tag{1.4}\\ &=\frac{1}{2\sqrt{\pi}}\int_0^\infty\frac{1+v^2}{1+v^4}\;\mathrm{d}v\tag{1.5}\\ &=\frac{1}{2\sqrt{\pi}}\int_0^\infty\frac{d(v-v^{-1})}{(v-v^{-1})^2+2}\tag{1.6}\\ &=\frac{1}{2\sqrt{\pi}}\int_{-\infty}^\infty\frac{dw}{w^2+2}=\frac{1}{2\sqrt{2\pi}}\arctan\left(\frac{w}{\sqrt{2}}\right)\bigg{|}_{-\infty}^{\infty}=\sqrt{\frac{\pi}{8}}\tag{1.7}\\ \end{align} $$

Notes :

$(1.1)$ substitution $u=x^2$

$(1.2)$ Gaussian integral

$(1.3)$ changing the order of integration

$(1.4)$ the second apriori formula, we will get the same integral as @Sangchul Lee got.

$(1.5)$ same method, but slightly modified, wrtite the integral as $I=(I+I)/2$ then in the second make substitution $v\rightarrow 1/v$ to get this form

$(1.6)$ dividing both numeratpr and denominator by $v^2$, completing the differential

$(1.7)$ substitution $w=v-v^{-1}$, doesn't need any commentary :)

Similarly for $\cos(x^2)$.

$\endgroup$
1
  • $\begingroup$ FYI I added missing minus signs in the Gaussian integrals $\endgroup$ Commented Dec 5, 2017 at 13:53
6
$\begingroup$

Let $$F(t)=\int_0^{\infty} \sin(tx^2)\ dx$$ Taking the Laplace Transform of $F(t)$: $$\mathscr{L}\{F(t)\}=\int_0^{\infty}F(t)e^{-st}\ dt$$ By being slightly less than rigorous this can be rewritten as $$\int_0^{\infty}\mathscr{L}\{\sin (tx^2)\}\ dx=\int_0^{\infty}\frac{x^2}{s^2+x^4}\ dx$$ This can be put into partial fractions as $$\frac{x^2}{s^2+x^4}\to\frac{Ax+B}{(s+ix^2)}+\frac{Cx+D}{(s-ix^2)}$$ $$(Ax+B)(s-ix^2)+(Cx+D)(s+ix^2)=x^2$$ $$A=C=0,\ B=\frac{i}{2},\ D=-\frac{i}{2}$$ $$\begin{equation}\begin{aligned} \int_0^{\infty}\frac{x^2}{s^2+x^4}\ dx&=\int_0^{\infty}\frac{i}{2(s+ix^2)}\ dx\ -\int_0^{\infty}\frac{i}{2(s-ix^2)}\ dx \\ &=\frac{1}{2}\int_0^{\infty}\frac{1}{x^2-is}\ dx\ +\frac{1}{2}\int_0^{\infty}\frac{1}{x^2+is}\ dx \\ &=\lim_{c\to\infty}\frac{1}{2}\bigg[\frac{1}{\sqrt{is}}\tan ^{-1} \bigg(\frac{x}{\sqrt{is}}\bigg)-\frac{1}{\sqrt{is}}\tanh ^{-1}\bigg(\frac{x}{\sqrt{is}}\bigg)\bigg]_0^c \\ &=\frac{\pi}{4}\bigg(\frac{1}{\sqrt{is}}+\frac{1}{\sqrt{-is}}\bigg)=\frac{\pi}{4}\bigg(\frac{\sqrt{2}}{2\sqrt{s}}(1-i)+\frac{\sqrt{2}}{2\sqrt{s}}(1+i)\bigg)=\frac{\pi\sqrt{2}}{4\sqrt{s}} \end{aligned}\end{equation}$$ Now taking the inverse Laplace Transform: $$\mathscr{L}^{-1}\bigg\{\frac{\pi\sqrt{2}}{4\sqrt{s}}\bigg\}=\frac{\pi\sqrt{2}}{4}\mathscr{L}^{-1}\bigg\{\frac{1}{\sqrt{s}}\bigg\}=\frac{\pi\sqrt{2}}{4\sqrt{\pi t}}$$ By noting that $$F(1)=\int_0^{\infty}\sin (x^2)\ dx$$ $$\int_0^{\infty}\sin (x^2)\ dx=\frac{\pi\sqrt{2}}{4\sqrt{\pi\times 1}}=\sqrt{\frac{\pi}{8}}$$

$\endgroup$
5
$\begingroup$

Here is paper that addresses this exact question by H. Flanders, "On Fresnel integrals", American Mathematical Monthly, vol. 89, no. 4, 1982, pp. 264-266.

Here is another paper on the topic that does not require a subscription.

$\endgroup$
4
$\begingroup$

Integrate $\displaystyle{J \equiv \int_{0}^{\infty}{\rm e}^{{\rm i}x^{2}}\,{\rm d}x}$. $\quad\Im J = ?$.

\begin{eqnarray*} J^{2} & = & \int_{0}^{\infty}{\rm e}^{{\rm i}x^{2}}\,{\rm d}x \int_{0}^{\infty}{\rm e}^{{\rm i}y^{2}}\,{\rm d}y = {\pi \over 2}\int_{0}^{\infty}{\rm e}^{{\rm i}\,\rho^{2}}\rho\,{\rm d}\rho = {\pi \over 4}\int_{0}^{\infty}{\rm e}^{{\rm i}\,\rho}\,{\rm d}\rho \\[3mm] & = & {\pi \over 4}\int_{-\infty}^{\infty} \left(% {\rm i}\int_{-\infty}^{\infty}{{\rm d}k \over 2\pi}\, {{\rm e}^{-{\rm i}k\rho} \over k + {\rm i}0^{+}} \right) {\rm e}^{{\rm i}\,\rho}\,{\rm d}\rho = {\rm i}\,{\pi \over 4}\int_{-\infty}^{\infty}{{\rm d}k \over k + {\rm i}0^{+}} \int_{-\infty}^{\infty}{{\rm d}\rho \over 2\pi}\,{\rm e}^{{\rm i}\left(1 - k\right)\rho} \\[3mm] & = & {\rm i}\,{\pi \over 4}\int_{-\infty}^{\infty}{{\rm d}k \over k + {\rm i}0^{+}} \delta\left(1 - k\right) = {\rm i}\,{\pi \over 4}{1 \over 1 + {\rm i}0^{+}} = {\rm i}\,{\pi \over 4}\left\lbrack 1 - {\rm i}\pi\,\delta\left(1\right)\right\rbrack = {\rm i}\,{\pi \over 4} = {\rm e}^{{\rm i}\pi/2}\,{\pi \over 4} \\[1cm]&&\mbox{} \end{eqnarray*}

$$ J = \sqrt{\,{\rm e}^{{\rm i}\pi/2}\,{\pi \over 4}\,} = {\rm e}^{{\rm i}\pi/4}\,\sqrt{\,\pi \over 4\,} $$

$$ \int_{0}^{\infty}\sin\left(x^{2}\right)\,{\rm d}x = \Im J = \overbrace{\quad\sin\left(\pi \over 4\right)\quad}^{=\ 1/\sqrt{\,2\,}} \sqrt{\,\pi \over 4\,} = \sqrt{\,\pi \over 8\,} $$

$\endgroup$
3
  • 1
    $\begingroup$ Hi Felix. There seems to be a flaw in the second step since $\int_0^\infty \rho e^{i\rho^2}\,d\rho$ fails to converge. Since original integral is not absolutely convergent, Fubini-Tonelli does not apply and we cannot assert that the either of the iterated integrals equals the double integral. In this case, apparently, they are not equal. ;-)) ... -Mark $\endgroup$ Commented May 19, 2016 at 18:51
  • 1
    $\begingroup$ @Dr.MV Indeed, I'm not happy with my answer since later on I was aware that it was a Fresnel integral. I'll wait 24 hours such that you can read this comment. After that, I'll delete my answer. Thanks a lot. $\endgroup$ Commented May 19, 2016 at 19:44
  • 1
    $\begingroup$ Felix, please don't delete the answer. If we interpret things as generalized functions, then in the spirit of regularization, the limit $\lim_{\rho \to \infty }e^{i\rho}=0$ (Riemann-Lebesgue Lemma) and we are done. -Mark $\endgroup$ Commented May 19, 2016 at 19:46
3
$\begingroup$

Short Answer

Let set, $$I=\int_0^\infty \cos(x^2) dx \quad\text{and}\quad J=\int_0^\infty \sin(x^2) dx$$

Summary: We will prove that $$ \color{blue}{0= (I+J)(I-J)=I^2 -J^2 =\lim_{t \to 0}I_t^2-J^2_t}$$ Where, $$I_t = \int_0^\infty e^{-tx^2}\cos(x^2) dx~~~~\text{and}~~~ J_t = \int_0^\infty e^{-tx^2}\sin(x^2) dx$$ $t\mapsto I_t$ and $t\mapsto J_t$ are clearly continuous due to the presence of the powerful integrand factor $e^{-tx^2}$.

However, By Fubini we have,

\begin{split} I_t^2-J^2_t&=& \left(\int_0^\infty e^{-tx^2}\cos(x^2) dx\right) \left(\int_0^\infty e^{-ty^2}\cos(y^2) dy\right) - \left(\int_0^\infty e^{-tx^2}\sin(x^2) dx\right) \left(\int_0^\infty e^{-ty^2}\sin(y^2) dy\right) \\ &=& \int_0^\infty \int_0^\infty e^{-t(x^2+y^2)}\cos(x^2+y^2)dxdy\\ &=&\int_0^{\frac\pi2}\int_0^\infty re^{-tr^2}\cos r^2 drd\theta\\&=&\frac\pi4 Re\left( \int_0^\infty \left[\frac{1}{i-t}e^{(i-t)r^2}\right]' dr\right)\\ &=&\color{blue}{\frac\pi4\frac{t}{1+t^2}\to 0~~as ~~~t\to 0} \end{split}

<To end the proof:** Let show that $I\ge 0$ and $J\ge 0$. Performing an integration by part we obtain $$J = \frac{1}{\sqrt{2}} \int^\infty_0\frac{\sin(2x)}{x^{1/2}}\,dx=\frac{1}{\sqrt{2}}\underbrace{\left[\frac{\sin^2 x}{x^{1/2}}\right]_0^\infty}_{=0} +\frac{1}{2\sqrt{2}} \int^\infty_0\frac{\sin^2 x}{x^{3/2}}\,dx\color{red}{\ge0}$$ Given that $\color{red}{\sin 2x= 2\sin x\cos x =(\sin^2x)'}$. Similarly we have, $$I = \frac{1}{\sqrt{2}}\int^\infty_0\frac{\cos(2x)}{\sqrt{x}}\,dx=\frac{1}{2\sqrt{2}}\underbrace{\left[\frac{\sin 2 x}{x^{1/2}}\right]_0^\infty}_{=0} +\frac{1}{4\sqrt{2}} \int^\infty_0\frac{\sin 2 x}{x^{3/2}}\,dx\\= \frac{1}{4\sqrt{2}}\underbrace{\left[\frac{\sin^2 x}{x^{1/2}}\right]_0^\infty}_{=0} +\frac{3}{8\sqrt{2}} \int^\infty_0\frac{\sin^2 x}{x^{5/2}}\,dx\color{red}{\ge0}$$

Conclusion: $I^2-J^2 =0$.

However using similar technique in above prove one can easily arrives at the following $$I_tJ_t = \frac\pi8\frac{1}{t^2+1}$$ from which one get explicit value of $$I^2=J^2= IJ = \lim_{t\to 0}I_tJ_t =\frac\pi8$$

since, $$\\ 2 I_tJ_t = I_tJ_t+I_tJ_t = \\= \left(\int_0^\infty e^{-tx^2}\sin(x^2) dx\right) \left(\int_0^\infty e^{-ty^2}\cos(y^2) dy\right) + \left(\int_0^\infty e^{-tx^2}\cos(x^2) dx\right) \left(\int_0^\infty e^{-ty^2}\sin(y^2) dy\right) \\= \int_0^\infty \int_0^\infty e^{-t(x^2+y^2)}\sin(x^2+y^2)dxdy $$

for more details see here:Proof only by transformation that : $ \int_0^\infty \cos(x^2) dx = \int_0^\infty \sin(x^2) dx $

$\endgroup$
2
$\begingroup$

I'm not sure if this is a "real method" (that's because I know very little about it) but it works.

Let $$I=\int_0^\infty \sin(x^n)\,\mathrm{d}x$$ Therefore $$I=\int_0^\infty \sin(x^n)\,\mathrm{d}x=-\mathrm{Im}\left[\int_0^\infty e^{-ix^n}\,\mathrm{d}x\right]$$ Make the substitution $\,t=ix^n \ \Rightarrow \ x=i^{-1/n}\, t^{1/n} \ \Rightarrow \ \mathrm{d}x=\dfrac{i^{-1/n}}{n}\, t^{1/n-1}\,\mathrm{d}t$. Whence, $$\begin{aligned} I&=-\mathrm{Im}\left[i^{-1/n}\,\frac{1}{n}\int_0^\infty t^{1/n-1} e^{-t}\,\mathrm{d}t\right]\\ &=-\frac{1}{n}\ \mathrm{Im}\left[i^{-1/n}\,\Gamma\left(\frac{1}{n}\right)\right]\\ &=-\frac{1}{n}\,\Gamma\left(\frac{1}{n}\right)\, \mathrm{Im}\left[e^{-\tfrac{i\pi}{2n}}\right] \quad \text{(since $i=e^{-i\pi/2}$)}\\ &=\Gamma\left(1+\frac{1}{n}\right)\sin\left(\frac{\pi}{2n}\right) \quad \left(\text{since} \ \mathrm{Im}\left[e^{-\tfrac{i\pi}{2n}}\right]=-\sin\left(\frac{\pi}{2n}\right)\right) \end{aligned}$$

We can then conclude that

$$\int_0^\infty \sin(x^n)\,\mathrm{d}x=\Gamma\left(1+\frac{1}{n}\right)\sin\left(\frac{\pi}{2n}\right), \quad n>1$$

With $n=2$,

$$\int_0^\infty \sin(x^2)\,\mathrm{d}x=\Gamma\left(\frac{3}{2}\right)\sin\frac{\pi}{4}=\frac{\sqrt{\pi}}{2\sqrt{2}}$$

$\endgroup$
4
  • $\begingroup$ Welcome to MSE. That is surely not a real method, since it uses complex non-real numbers. $\endgroup$ Commented Jul 14, 2022 at 17:33
  • $\begingroup$ Oh, I see. Now I know. Thanks. $\endgroup$ Commented Jul 14, 2022 at 17:51
  • $\begingroup$ Not only because it uses complex numbers, but as soon as we use $$\mathrm{d}x=\dfrac{i^{-1/n}}{n}\, t^{1/n-1}\,\mathrm{d}t$$ we require contour integration to equate the integrals (since the path of the integral in $t$ is along a line in the direction of $i^{-1/n}$). $\endgroup$ Commented Jul 14, 2022 at 20:14
  • $\begingroup$ @robjohn You don't say, huh? $\endgroup$ Commented Jul 15, 2022 at 12:37
0
$\begingroup$

Using $$ \int_0^\infty f(x)\mathcal L\{g(t)\}(x)\;dx=\int_0^\infty \mathcal \{f(x)\}(t)g(t)\;dt $$ one has $$\begin{eqnarray} I&=& \int_{0}^{\infty}\sin\left(x^2\right)\;dx\overset{x^2\to x}=\int_{0}^{\infty}\frac{\sin x}{2\sqrt{x}}\;dx\\ &=&\frac1{2\sqrt\pi}\int_0^\infty\sin x\,\mathcal L\{\frac1{\sqrt t}\}(x)\;dx=\frac1{2\sqrt\pi}\int_0^\infty\mathcal L\{\sin x\}(t)\frac1{\sqrt t}\;dt\\ &=&\frac1{2\sqrt\pi}\int_0^\infty\frac1{\sqrt t(t^2+1)}\;dt=\frac1{2\sqrt\pi}\cdot\frac{\pi}{\sqrt2}=\frac{\sqrt \pi}{2\sqrt2}. \end{eqnarray}$$

$\endgroup$

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.