4
$\begingroup$

Let $x=(x_1, \cdots, x_n)\in \mathbb{R}^n$ be Cartesian coordinates and $(r,\theta)=(r,\theta_1, \cdots , \theta_{n-1})$, where $r\in (0,\infty), \theta_1,\dots, \theta_{n-2}\in (0,\pi)$ and $\theta_{n-1}\in (-\pi,\pi)$ be polar coordinates. The coordinate transform is given by $$\Psi:(r,\theta_1, \cdots, θ_{n - 1})\mapsto x=\begin{cases} x_1=r\cos{\theta_1}, \\ x_2=r\sin{\theta_1}\cos{\theta_2}, \\ x_3=r\sin{\theta_1}\sin{\theta_2}\cos{\theta_3}, \\ \vdots \\ x_{n-1}=r\sin{\theta_1}\sin{\theta_2}\dots \sin{\theta_{n-2}}\cos{\theta_{n-1}}, \\ x_n=r\sin{\theta_1}\sin{\theta_2}\dots \sin{\theta_{n-2}}\sin{\theta_{n-1}}. \end{cases}$$

I am trying to find the range of this function $\Psi$. I think it is $\mathbb{R}^n \backslash \{x:x_n=0,x_{n-1}\le 0\}$, but I cannot think of a way to show this explicitly from the definition of $\Psi$. I would greatly appreciate any help.

$\endgroup$

2 Answers 2

3
+100
$\begingroup$

Denote $$A = (0, +\infty) × (0, π)^{n - 2} × (-π, π),\\ B = \{(x_1, \cdots, x_n) \in \mathbb{R}^n \mid x_{n - 1} \leqslant 0,\ x_n = 0\}.$$ It will be proved that $\mathrm{im}({\mit Ψ}) = \mathbb{R}^n\setminus B$.

First, consider any $(x_1, \cdots, x_n) \in B$. Suppose there exists $(r, θ_1, \cdots, θ_{n - 1}) \in A$ such that $$(x_1, \cdots, x_n) = {\mit Ψ}(r, θ_1, \cdots, θ_{n - 1}).$$

Because $x_n = r \sin θ_1 \cdots \sin θ_{n - 2} \sin θ_{n - 1} = 0$ and$$ r > 0,\ θ_1, \cdots, θ_{n - 2} \in (0, π) \Longrightarrow r \sin θ_1 \cdots \sin θ_{n - 2} > 0, $$ then $\sin θ_{n - 1} = 0$. Note that $θ_{n - 1} \in (-π, π)$, thus $θ_{n - 1} = 0$. Therefore,$$ 0 \geqslant x_{n - 1} = r \sin θ_1 \cdots \sin θ_{n - 2} \cos θ_{n - 1} = r \sin θ_1 \cdots \sin θ_{n - 2} > 0, $$ a contradiction. Thus $B \cap \mathrm{im}({\mit Ψ}) = \varnothing$.

Now consider any $(x_1, \cdots, x_n) \not\in B$. Take $r = \sqrt{\sum\limits_{k = 1}^n x_k^2}$ and $θ_1 = \arccos \dfrac{x_1}{r} \in (0, π)$.
Suppose $θ_j$ has been defined for $1 \leqslant j \leqslant k - 1$ as$$ θ_j = \arccos \frac{x_j}{r \sin θ_1 \cdots \sin θ_{j - 1}}, $$where $k \leqslant n - 2$. Because$$ \sin^2 θ_j = 1 - \frac{x_j^2}{r^2 \sin^2 θ_1 \cdots \sin^2 θ_{j - 1}}\\ \Longrightarrow r^2 \sin^2 θ_1 \cdots \sin^2 θ_{j - 1} - r^2 \sin^2 θ_1 \cdots \sin^2 θ_j = x_j^2, \quad 1 \leqslant j \leqslant k - 1 $$ then\begin{align*} \sum_{j = 1}^{k - 1} x_j^2 &= \sum_{j = 1}^{k - 1} (r^2 \sin^2 θ_1 \cdots \sin^2 θ_{j - 1} - r^2 \sin^2 θ_1 \cdots \sin^2 θ_j)\\ &= r^2 - r^2 \sin^2 θ_1 \cdots \sin^2 θ_{k - 1}, \tag{1} \end{align*} which implies$$ r^2 \sin^2 θ_1 \cdots \sin^2 θ_{k - 1} = r^2 - \sum_{j = 1}^{k - 1} x_j^2 = \sum_{j = k}^n x_j^2 > x_k^2, \tag{2} $$ where the last inequality uses the fact that$$ (x_1, \cdots, x_n) \not\in B \Longrightarrow x_{n - 1} \neq 0 \text{ or } x_n \neq 0. $$ Now take$$ θ_k = \arccos \frac{x_k}{r \sin θ_1 \cdots \sin θ_{k - 1}} \in (0, π). $$

At last, suppose $θ_1, \cdots, θ_{n - 2}$ have been defined as$$ θ_k = \arccos \frac{x_k}{r \sin θ_1 \cdots \sin θ_{k - 1}}. \quad 1 \leqslant k \leqslant n - 2 $$ Case 1: $x_n = 0$. Take $θ_{n - 1} = 0 \in (-π, π)$, then$$ r \sin θ_1 \cdots \sin θ_{n - 1} = 0 = x_n. $$ Analogous to (1), there is$$ \sum_{k = 1}^{n - 2} x_k^2 = r^2 - r^2 \sin^2 θ_1 \cdots \sin^2 θ_{n - 2}. $$ Note that $(x_1, \cdots, x_n) \not\in B$, then $x_{n - 1} > 0$. Since $x_n = 0$, then$$ r \sin θ_1 \cdots \sin θ_{n - 2} = \sqrt{r^2 - \sum_{k = 1}^{n - 2} x_k^2} = \sqrt{x_{n - 1}^2 + x_n^2} = x_{n - 1}. $$ Therefore$$ {\mit Ψ}(r, θ_1, \cdots, θ_{n - 1}) = (x_1, \cdots, x_n) \Longrightarrow (x_1, \cdots, x_n) \in \mathrm{im}({\mit Ψ}). $$

Case 2: $x_n > 0$. Analogous to (2), there is$$ r^2 \sin^2 θ_1 \cdots \sin^2 θ_{n - 2} = x_{n - 1}^2 + x_n^2 > x_{n - 1}^2. $$ Take$$ θ_{n - 1} = \arccos \frac{x_{n - 1}}{r \sin θ_1 \cdots \sin θ_{n - 2}} \in (0, π). $$ Again analogous to (1), there is$$ \sum_{k = 1}^{n - 1} x_k^2 = r^2 - r^2 \sin^2 θ_1 \cdots \sin^2 θ_{n - 1}. $$ Note that $x_n > 0$, thus$$ r \sin θ_1 \cdots \sin θ_{n - 1} =\sqrt{r^2 - \sum_{k = 1}^{n - 1} x_k^2} = x_n. $$ Therefore$$ {\mit Ψ}(r, θ_1, \cdots, θ_{n - 1}) = (x_1, \cdots, x_n) \Longrightarrow (x_1, \cdots, x_n) \in \mathrm{im}({\mit Ψ}). $$

Case 3: $x_n < 0$. The proof for this case is the same as that for Case 2 except for changing $$θ_{n - 1} = \arccos \frac{x_{n - 1}}{r \sin θ_1 \cdots \sin θ_{n - 2}} \in (0, π)$$ to$$ θ_{n - 1} = -\arccos \frac{x_{n - 1}}{r \sin θ_1 \cdots \sin θ_{n - 2}} \in (-π, 0). $$

Therefore, $\mathrm{im}({\mit Ψ}) = \mathbb{R}^n \setminus B$.

$\endgroup$
1
$\begingroup$

Show that for all $(r, \theta_1, \ldots, \theta_{n-1}) \in (0, \infty) \times (0, \pi)^{n-2} \times (-\pi, \pi)$, $\Psi(r, \theta) \in \mathbb{R}^n \setminus \{x:x_n =0, x_{n-1} \leq 0\}$.

This merely follows from $x_n=0$ requiring that $\theta_{n-1}=0$.

Then show that for all $x \in \Psi(r, \theta) \in \mathbb{R}^n \setminus \{x:x_n =0, x_{n-1} \leq 0\}$, there exists $(r, \theta_1, \ldots, \theta_{n-1}) \in (0, \infty) \times (0, \pi)^{n-2} \times (-\pi, \pi)$ such that $x = \Psi(r, \theta)$.

The trick is to this is to define $r, \theta$ in terms of $x$. The following should work for $r$: $$r = \sqrt{\sum_{i=1}^nx_i^2}.$$ $\theta$ can be defined recursively.

$\endgroup$

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.