Let $f:\mathbb{C^n}\rightarrow \mathbb{C}$ be a function. Define $g:\mathbb{D}\rightarrow \mathbb{C}$, by $g(t)=f(tz)$ ($\mathbb{D}$ is the unit disk in $\mathbb{C}$). Calculate $g^k(t)$ for some $k$ including terms of the form $\displaystyle \frac{\partial^n(f(tz))}{\partial^n(z)} $ for $n\leq k$.
I tried the simplest one first, i.e. when $k=1$. Here, $z=(z_1,z_2,...,z_n)$. So,by chain rule $\displaystyle g'(t)=\frac{\partial(f(tz))}{\partial(tz)}.z=\frac{\partial(f(tz))}{\partial(z)}.\frac{\partial(z)}{\partial(tz)}.z=\frac{\partial(f(tz))}{\partial(z)}.\frac{z}{t}$.
Similarly I get $\displaystyle g''(t)=\frac{\partial(f(tz))}{\partial(z)}(\frac{-z}{t^2})+\frac{\partial^2(f(tz))}{\partial^2(z)}(\frac{z^2}{t^2}).$
Is my calculations correct?