0
$\begingroup$

Let $c>1$ be a real number, let $\alpha$ be a complex number with $0<\mathrm{Re}(\alpha)\leq 1$ and $T$ a large positive real number. Now consider the integral $$\frac{1}{2\pi i}\int_{c-iT}^{c+iT}\frac{\Gamma\left(w\right)}{\Gamma\left(w+\alpha\right)}dw.$$ Recalling the definition of Beta function $$B\left(a,b\right)=\int_{0}^{1}\left(1-t\right)^{a-1}t^{b-1}dt,\,\textrm{Re}\left(a\right)>0,\,\textrm{Re}\left(b\right)>0$$ from the inverse Mellin transform we get $$f\left(t\right)=\frac{\Gamma\left(a\right)}{2\pi i}\int_{c-i\infty}^{c+i\infty}t^{-b}\frac{\Gamma\left(b\right)}{\Gamma\left(a+b\right)}db,\,c>0,\,\textrm{Re}\left(a\right)>0$$ where $$f\left(t\right)=\begin{cases} \left(1-t\right)^{a-1} & 0<t<1\\ 0, & t\geq1. \end{cases}$$ Then $$\frac{1}{2\pi i}\int_{c-i\infty}^{c+i\infty}\frac{\Gamma\left(w\right)}{\Gamma\left(w+\alpha\right)}dw=0$$ so it means that $$\frac{1}{2\pi i}\int_{c-iT}^{c+iT}\frac{\Gamma\left(w\right)}{\Gamma\left(w+\alpha\right)}dw\rightarrow 0$$ as $T\rightarrow \infty.$

Question: Is it possible to find a function $f(\alpha,T)$ such that $$\frac{1}{2\pi i}\int_{c-iT}^{c+iT}\frac{\Gamma\left(w\right)}{\Gamma\left(w+\alpha\right)}dw=O(f(\alpha,T))$$ and $$\lim_{T\rightarrow\infty}f\left(\alpha,T\right)=0? $$

I tried to use the residue theorem but the limitation $0<\mathrm{Re}(\alpha)\leq 1$ is annoying. Thank you.

$\endgroup$
3
  • $\begingroup$ Plugging $t = 1$ in $f(t) = (1-t)^{a-1} 1_{t \in (0,1)}$ is allowed only if $\Re(a) > 1$. For $\Re(a) < 1$, $f(1) = \infty$ so you'll hardly find the bound you want. $\endgroup$ Commented Sep 16, 2017 at 21:27
  • $\begingroup$ @reuns So the inversion is not valid if $0<\mathrm{Re}\left(\alpha\right)<1$? $\endgroup$ Commented Sep 16, 2017 at 21:29
  • $\begingroup$ It is valid in the sense of distributions or $L^2$. And it is valid pointwise away from $t=1$. $\endgroup$ Commented Sep 16, 2017 at 21:31

1 Answer 1

1
$\begingroup$

About the Fourier/Laplace/Mellin inversion theorem.


Let $\phi_a(x) = \int_{-a}^a e^{ikx}dk = \frac{e^{iax}-e^{-iax}}{ix} = \frac{2 \sin(ax)}{x} = a \, \Phi'(ax)$ where $\Phi(x) = \int_{-\infty}^x \frac{2\sin(y)}{y} dy, \Phi(-\infty) = 0, \Phi(+\infty) = 2\pi$. If $F,F' \in L^1$ then integrating by parts $$\int_{-\infty}^\infty \hat{F}(k) dk = \lim_{a \to \infty} \int_{-a}^a \int_{-\infty}^\infty F(x)e^{-ikx}dx dk = \lim_{a \to\infty}\int_{-\infty}^\infty \phi_a(x) F(x)dx \\= \lim_{a \to\infty}-\int_{-\infty}^\infty \Phi(ax) F'(x)dx = -\int_{-\infty}^\infty 2 \pi 1_{x > 0} F'(x)dx =2\pi F(0)$$

Here $F(x) = f(e^x)e^{\Re(b) x}, f(t) = (1-t)^{a-1}$ so $F' \not \in L^1$ for $\Re(a) \in (0,1)$ but you can look at $F \ast n e^{-\pi n^2 x^2}$, obtaining that

$$\lim_{a \to \infty}\int_{-a}^a \hat{F}(k) dk = \lim_{n \to \infty}\int_{-\infty}^\infty \hat{F}(k) e^{-\pi k^2/n^2} dk= \lim_{n \to \infty} F \ast n e^{-\pi n^2 x^2}|_{x=0} = \infty$$

$\endgroup$

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.