Let $c>1$ be a real number, let $\alpha$ be a complex number with $0<\mathrm{Re}(\alpha)\leq 1$ and $T$ a large positive real number. Now consider the integral $$\frac{1}{2\pi i}\int_{c-iT}^{c+iT}\frac{\Gamma\left(w\right)}{\Gamma\left(w+\alpha\right)}dw.$$ Recalling the definition of Beta function $$B\left(a,b\right)=\int_{0}^{1}\left(1-t\right)^{a-1}t^{b-1}dt,\,\textrm{Re}\left(a\right)>0,\,\textrm{Re}\left(b\right)>0$$ from the inverse Mellin transform we get $$f\left(t\right)=\frac{\Gamma\left(a\right)}{2\pi i}\int_{c-i\infty}^{c+i\infty}t^{-b}\frac{\Gamma\left(b\right)}{\Gamma\left(a+b\right)}db,\,c>0,\,\textrm{Re}\left(a\right)>0$$ where $$f\left(t\right)=\begin{cases} \left(1-t\right)^{a-1} & 0<t<1\\ 0, & t\geq1. \end{cases}$$ Then $$\frac{1}{2\pi i}\int_{c-i\infty}^{c+i\infty}\frac{\Gamma\left(w\right)}{\Gamma\left(w+\alpha\right)}dw=0$$ so it means that $$\frac{1}{2\pi i}\int_{c-iT}^{c+iT}\frac{\Gamma\left(w\right)}{\Gamma\left(w+\alpha\right)}dw\rightarrow 0$$ as $T\rightarrow \infty.$
Question: Is it possible to find a function $f(\alpha,T)$ such that $$\frac{1}{2\pi i}\int_{c-iT}^{c+iT}\frac{\Gamma\left(w\right)}{\Gamma\left(w+\alpha\right)}dw=O(f(\alpha,T))$$ and $$\lim_{T\rightarrow\infty}f\left(\alpha,T\right)=0? $$
I tried to use the residue theorem but the limitation $0<\mathrm{Re}(\alpha)\leq 1$ is annoying. Thank you.