Suppose that A is a 3 x 3 matrix and that the solution to $A\vec{x} = \left[\begin{array}{ccc}8\\10\\5\end{array}\right]$ is
$\vec{x} = \left[\begin{array}{ccc}4\\-1\\0\end{array}\right] + s\left[\begin{array}{ccc}2\\3\\-1\end{array}\right], s \in \mathbb R$
The problem:
Is this enough information to find the solution to $A \vec{x} = \vec{0}$?
If yes, what is the solution?
If no, explain why not.
The solution:
1) Yes. Solution to $A \vec{x} = \vec{0}$ is $\vec{x} = s\left[\begin{array}{ccc}2\\3\\-1\end{array}\right], s \in \mathbb R$
2) If the solution to $A\vec{x} = \left[\begin{array}{ccc}8\\10\\5\end{array}\right]$ is $\vec{x} = \left[\begin{array}{ccc}4\\-1\\0\end{array}\right] + s\left[\begin{array}{ccc}2\\3\\-1\end{array}\right]$, then
3) $\left[\begin{array}{c|c}&8\\A&10\\&5\end{array}\right] \xrightarrow[\text{}]{\text{rref}} \left[\begin{array}{ccc|c}1&0&-2&4\\0&1&3&-1\\0&0&0&0\end{array}\right]$ then
4) $\left[\begin{array}{c|c}&0\\A&0\\&0\end{array}\right] \xrightarrow[\text{}]{\text{rref}} \left[\begin{array}{ccc|c}1&0&-2&0\\0&1&3&0\\0&0&0&0\end{array}\right]$
My question:
How am I supposed to start this question?
(the solution is given, but I do not know how to achieve even the first step)