1
$\begingroup$

Hello I'm having some issues with a homework problem. I need to express the integral as the limit of sums and evaluate $$\int_0^\pi \sin(7x)\,dx$$ I can find $$ \Delta x = \frac{\pi-0}{n} = \frac{\pi}{n} \text{ and }x_i = 0 + \frac{\pi}{n}i$$ so I get $$\int_0^\pi \sin(7x)\,dx = \lim_{n\to \infty}\sum_{i=1}^n\sin\left(\frac{7\pi}{n}i\right)\frac{\pi}{n} $$

I know that $$\lim_{n\to \infty}\sum_{i=1}^n\sin\left(\frac{7\pi}{n}i\right)\frac{\pi}{n} = \frac{2}{7}$$ but I need to understand how to get there only using limits and sums.

this is where I'm stuck, I don't know how to proceed while expressing the limit and sum. Any help would be greatly appreciated.

$\endgroup$
2
  • $\begingroup$ I am not sure I understand your question. The expression you find looks good. Do you have problems evaluating the integral? $\endgroup$ Commented Apr 13, 2018 at 21:01
  • $\begingroup$ You can take$\frac{\pi}{n}$ outside the sum. To evaluate the sum use $e^{i\pi\frac{7k}{n}}=cos(\pi\frac{7k}{n})+isin(\pi\frac{7k}{n})$. Carry out the summation and keep the imaginary part. $\endgroup$ Commented Apr 13, 2018 at 21:06

1 Answer 1

1
$\begingroup$

$$\begin{align} & \text{using}\ \text{lagrange trigonometric identity}\ \text{which reads:} \\ & \sum\nolimits_{i=1}^{n}{\operatorname{Sin}\left( i\theta \right)}=\frac{1}{2}Cot\left( \frac{\theta }{2} \right)-\frac{\operatorname{Cos}\left( \left( n+\frac{1}{2} \right)\theta \right)}{2\operatorname{Sin}\left( \frac{\theta }{2} \right)}, \\ & Now \\ & \sum\nolimits_{i=1}^{n}{\operatorname{Sin}\left( i\frac{7\pi }{n} \right)}=\frac{1}{2}Cot\left( \frac{7\pi }{2n} \right)-\frac{\operatorname{Cos}\left( \left( n+\frac{1}{2} \right)\frac{7\pi }{n} \right)}{2\operatorname{Sin}\left( \frac{7\pi }{2n} \right)} \\ & \quad \quad \quad \quad \quad \quad =\frac{1}{2}Cot\left( \frac{7\pi }{2n} \right)-\frac{\operatorname{Cos}\left( 7\pi +\frac{7\pi }{2n} \right)}{2\operatorname{Sin}\left( \frac{7\pi }{2n} \right)} \\ & \quad \quad \quad \quad \quad \ \ =\frac{\operatorname{Cos}\left( \frac{7\pi }{2n} \right)}{2\operatorname{Sin}\left( \frac{7\pi }{2n} \right)}-\frac{\operatorname{Cos}\left( 7\pi +\frac{7\pi }{2n} \right)}{2\operatorname{Sin}\left( \frac{7\pi }{2n} \right)} \\ & \quad \quad \quad \quad \quad \ \ =\frac{1}{2\operatorname{Sin}\left( \frac{7\pi }{2n} \right)}\left( \operatorname{Cos}\left( \frac{7\pi }{2n} \right)-\operatorname{Cos}\left( 7\pi +\frac{7\pi }{2n} \right) \right) \\ & So \\ & \underset{n\to \infty }{\mathop{\lim }}\,\sum\nolimits_{i=1}^{n}{\operatorname{Sin}\left( i\frac{7\pi }{n} \right)}\frac{\pi }{n} \\ & \underset{n\to \infty }{\mathop{\lim }}\,\frac{\pi }{n}\sum\nolimits_{i=1}^{n}{\operatorname{Sin}\left( i\frac{7\pi }{n} \right)}=\underset{n\to \infty }{\mathop{\lim }}\,\frac{\pi }{n}\left( \frac{1}{2\operatorname{Sin}\left( \frac{7\pi }{2n} \right)}\left( \operatorname{Cos}\left( \frac{7\pi }{2n} \right)-\operatorname{Cos}\left( 7\pi +\frac{7\pi }{2n} \right) \right) \right) \\ & \quad \quad \quad \quad \quad \ \ \quad \quad \quad =\underset{n\to \infty }{\mathop{\lim }}\,\frac{\frac{\pi }{n}}{2\operatorname{Sin}\left( \frac{7\pi }{2n} \right)}\ \underset{n\to \infty }{\mathop{\lim }}\,\left( \operatorname{Cos}\left( \frac{7\pi }{2n} \right)-\operatorname{Cos}\left( 7\pi +\frac{7\pi }{2n} \right) \right) \\ & \quad \quad \quad \quad \quad \ \ \quad \quad \quad =\frac{\pi }{2\times \frac{7\pi }{2}}\times \left( \operatorname{Cos}\left( 0 \right)-\operatorname{Cos}\left( 7\pi \right) \right)=\frac{1}{7}\times 2=\frac{2}{7} \\ \end{align} $$

$\endgroup$

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.