1
$\begingroup$

Let $X,Y,Z$ be uniformly distributed $U(0,1)$. Then I know that the density function for the random variable $A= X+Y$ is $$f(a) = \begin{cases} a & a\in (0,1)\\ 2-a & a\in[1,2)\\ 0 & \text{ otherwise} \end{cases}. $$ and $$ g(z)=\begin{cases} 1 & z\in (0,1)\\ 0 & \text{otherwise} \end{cases} $$ My goal is to find the $B = A+Z.$ By the convolution theorem: $$h(b) = \int_{-\infty}^{\infty}f(b-z)g(z)dz=\int_{0}^{1}f(b-z)dz.$$

After this I am not sure how to proceed. Any help will be much appreciated.

$\endgroup$
1
  • 1
    $\begingroup$ Crucial assumption missing in the question is that $X,Y,Z$ are independently distributed. $\endgroup$ Commented Sep 9, 2018 at 8:06

1 Answer 1

1
$\begingroup$

So we get \begin{equation} f(b-z) = \begin{cases} b-z & b-z\in (0,1)\\ 2-(b-z) & b-z\in[1,2)\\ 0 & \text{ otherwise} \end{cases}. \end{equation} We have that \begin{equation} 0<z<1 \end{equation} or \begin{equation} b-1<b-z<b \end{equation} If $b < 0$, then $b - z < 0$, so $h(b) = 0$ according to the boundaries we have. On the other hand if $b - 1> 2$ (or $b>3$), that is is $b-z>2$, we also get $f(b) = 0$. Other than that, we can distinguish three cases:

Case 1: If $0<b<1$ \begin{equation} h(b) = \int_{0}^{1}f(b-z)dz = \int_0^{b} b-z \ dz = \frac{b^2}{2} \end{equation}

Case 2: If $1<b<2$ \begin{equation} h(b) = \int_{0}^{1}f(b-z)dz = \int_{b-1}^{1} b-z \ dz + \int_{0}^{b-1} 2-(b-z) \ dz = \frac{b(2-b)}{2}-\dfrac{b^2-4b+3}{2} \end{equation}

Case 3: If $2<b<3$, we have \begin{equation} h(b) = \int_{0}^{1}f(b-z)dz = \int_{b-2}^{1} 2-(b-z) \ dz = \frac{b^2-6b+9}{2} \end{equation}

Distribution of B \begin{equation} h(b) = \begin{cases} \frac{b^2}{2} & b\in (0,1)\\ \frac{b(2-b)}{2}-\frac{b^2-4b+3}{2} & b\in(1,2)\\ \frac{b^2-6b+9}{2} & b\in(2,3)\\ 0 & \text{ otherwise} \end{cases}. \end{equation}

$\endgroup$
2
  • $\begingroup$ Hi Thanks for the answer, I just didn't get why you would change the limits of integration from 0 to 1 to 0 to b in Case 1. $\endgroup$ Commented Sep 9, 2018 at 9:44
  • $\begingroup$ Hello @Hello_World, well you know, allowing $z$ to go from $0$ till $b$ is allowing $x$ in $f(x)$ to vary from $x = b-z = b-b = 0$ till $x = b-z = b-0 = b$. You need to cover all the case where $b - z \in [0,1]$, right ? $\endgroup$ Commented Sep 9, 2018 at 21:16

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.