Problem:
Let $X$ and $Y$ be identically distributed independent random variable with the density function $$ f(y) = \begin{cases} e^{-t} & t \geq 0 \\ 0 & \text{otherwise} \end{cases} $$
Answer:
Let $Z = X + Y$. Now we want to find a density function for $Z$ by using the convoluation. Let $g(u)$ be the density function for $Z$. \begin{align*} g(u) &= \int_0^{ \infty }f(v)f(u-v) \,\, dv \\ g(u) &= \int_0^{ \infty } e^{-v} e^{-(u-v)} \,\, dv \\ g(u) &= \int_0^{ \infty } e^{-v} e^{-u + v} \,\, dv \\ g(u) &= \int_0^{ \infty } e^{-u} \,\, dv \\ g(u) &= \int_0^{ \infty } e^{-u}v \bigg|_{v=0}^{v=\infty} \\ g(u) &= 0 - e^{-u} \\ g(u) &= - e^{-u} \end{align*} However, the book gets: $$ g(u) = \begin{cases} ue^{-u} & u \geq 0 \\ 0 & \text{otherwise} \end{cases} $$ Where did I go wrong?