I'm aware of all that transformations from one coordinate system to another, but they don't really help me parametrising a surface. Rather the implicit functions are useful to me.
For example the unit sphere can be described simply by $x^2+y^2+z^2 < 1$, what easily brings the parametrisation:
$$\text{unit sphere:}\:\psi(x,y)=\left(\begin{array}{cc}x\\y\\\pm\sqrt{1-x^2-y^2}\end{array}\right)\quad x\in[0,1] \quad y\in[0,1]$$
From there u can receive the parametrisation in cylindrical or spherical coordinates merely by plugging in $\texttt{cylindrical:}\: x = r\,\cos(\varphi), y = r\,\sin(\varphi)$ or $\texttt{spherical:}\: x = \cos(\varphi)\,\sin(\theta), y = \sin(\varphi)\,\sin(\theta)$, leaving us with:
$$\text{unit sphere:}\:\psi(r,\varphi)=\left(\begin{array}{cc}r\,\cos(\varphi)\\r\,\sin(\varphi)\\\pm\sqrt{1-r^2}\end{array}\right)\quad r\in[0,1] \quad \varphi\in[0,2\,\pi]$$
$$\text{unit sphere:}\:\psi(\varphi,\theta)=\left(\begin{array}{cc}\cos(\varphi)\,\sin(\theta)\\\sin(\varphi)\,\sin(\theta)\\\cos(\theta)\end{array}\right)\quad \varphi\in[0,2\,\pi] \quad \theta\in[0,\pi]$$
Now to my actual question trying this with a cylinder. Since it's implicit function is independent of $z$, I already had a little trouble finding the cartesian parametrisation: $x^2+y^2<1$, so I just came up with:
$$\begin{array}{cc} &\text{unit cylinder:}&\:\psi(y,z)=\left(\begin{array}{cc}\pm\sqrt{1-y^2}\\y\\z\end{array}\right)\quad y\in[0,1] \quad z\in[0,1] \\\\ &&&&&\llap{\text{Now using $\texttt{cylindrical:}\: y = r\,\sin(\varphi), z = z$ or $\texttt{spherical:}\: y = \sin(\varphi)\,\sin(\theta), z = \cos(\theta)$, getting:}} \\\\ &\text{unit cylinder:}&\:\psi(r,z)=\left(\begin{array}{cc}r\,\sin(\varphi)\\r\,\cos(\varphi)\\z\end{array}\right)\quad r\in[0,1] \quad \varphi\in[0,2\,\pi] \\\\ &\text{unit cylinder:}&\:\psi(\varphi,\theta)=\left(\begin{array}{cc}\pm\sqrt{1-\sin^2(\varphi)\,sin^2(\theta)}\\\sin(\varphi)\sin(\theta)\\\cos(\theta)\end{array}\right)\quad \varphi\in[0,2\,\pi] \quad \varphi\in[0,\pi]\end{array}$$
the last parametrisation is exactly what I am looking for: a cylinder in spheric coordinates, but it looks a tad awkward.