1
$\begingroup$

I'm aware of all that transformations from one coordinate system to another, but they don't really help me parametrising a surface. Rather the implicit functions are useful to me.

For example the unit sphere can be described simply by $x^2+y^2+z^2 < 1$, what easily brings the parametrisation:

$$\text{unit sphere:}\:\psi(x,y)=\left(\begin{array}{cc}x\\y\\\pm\sqrt{1-x^2-y^2}\end{array}\right)\quad x\in[0,1] \quad y\in[0,1]$$

From there u can receive the parametrisation in cylindrical or spherical coordinates merely by plugging in $\texttt{cylindrical:}\: x = r\,\cos(\varphi), y = r\,\sin(\varphi)$ or $\texttt{spherical:}\: x = \cos(\varphi)\,\sin(\theta), y = \sin(\varphi)\,\sin(\theta)$, leaving us with:

$$\text{unit sphere:}\:\psi(r,\varphi)=\left(\begin{array}{cc}r\,\cos(\varphi)\\r\,\sin(\varphi)\\\pm\sqrt{1-r^2}\end{array}\right)\quad r\in[0,1] \quad \varphi\in[0,2\,\pi]$$

$$\text{unit sphere:}\:\psi(\varphi,\theta)=\left(\begin{array}{cc}\cos(\varphi)\,\sin(\theta)\\\sin(\varphi)\,\sin(\theta)\\\cos(\theta)\end{array}\right)\quad \varphi\in[0,2\,\pi] \quad \theta\in[0,\pi]$$


Now to my actual question trying this with a cylinder. Since it's implicit function is independent of $z$, I already had a little trouble finding the cartesian parametrisation: $x^2+y^2<1$, so I just came up with:

$$\begin{array}{cc} &\text{unit cylinder:}&\:\psi(y,z)=\left(\begin{array}{cc}\pm\sqrt{1-y^2}\\y\\z\end{array}\right)\quad y\in[0,1] \quad z\in[0,1] \\\\ &&&&&\llap{\text{Now using $\texttt{cylindrical:}\: y = r\,\sin(\varphi), z = z$ or $\texttt{spherical:}\: y = \sin(\varphi)\,\sin(\theta), z = \cos(\theta)$, getting:}} \\\\ &\text{unit cylinder:}&\:\psi(r,z)=\left(\begin{array}{cc}r\,\sin(\varphi)\\r\,\cos(\varphi)\\z\end{array}\right)\quad r\in[0,1] \quad \varphi\in[0,2\,\pi] \\\\ &\text{unit cylinder:}&\:\psi(\varphi,\theta)=\left(\begin{array}{cc}\pm\sqrt{1-\sin^2(\varphi)\,sin^2(\theta)}\\\sin(\varphi)\sin(\theta)\\\cos(\theta)\end{array}\right)\quad \varphi\in[0,2\,\pi] \quad \varphi\in[0,\pi]\end{array}$$

the last parametrisation is exactly what I am looking for: a cylinder in spheric coordinates, but it looks a tad awkward.

$\endgroup$
2
  • 1
    $\begingroup$ In spherical coordinates $r$ increases as you move up the cylinder (z axis). $r$ is not $1$. $\endgroup$ Commented Jun 23, 2021 at 12:20
  • 1
    $\begingroup$ $r \sin{\theta} = 1$, the radius of the circle. $r = \displaystyle \frac{1}{\sin{\theta}}$ $\endgroup$ Commented Jun 23, 2021 at 12:27

1 Answer 1

1
$\begingroup$

From https://en.wikipedia.org/wiki/Spherical_coordinate_system

r ∈ [0, ∞), θ ∈ [0, π], φ ∈ [0, 2π)

For the unit cylinder:

$r \sin{\theta} = 1$, the radius of the cylinder.

$r = \displaystyle \frac{1}{\sin{\theta}}$

\begin{align} \psi(\theta,\varphi) &= \begin{bmatrix} \cos{\varphi} \\ \sin{\varphi} \\ \displaystyle\frac{\cos{\theta}}{\sin{\theta}} \end{bmatrix} \end{align}

At any given $z$ the radius in the $(x,y)$ plane is $1$. $x$ and $y$ do not depend on $\theta$ only $\varphi$.

$\endgroup$
1
  • $\begingroup$ really interesting parametrisation. didn't thought it'll work, but it brings a cylinder with infinit hight. In fact you could just write $\psi(\varphi,\theta) = \displaystyle{\left[\begin{array}{cc}\cos(\varphi)\\\sin(\varphi)\\\theta\end{array}\right]}$ receiving a cylinder, because it's just renamed. $\endgroup$ Commented Jun 24, 2021 at 16:13

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.