Using cartesian coordinates the volume of a sphere can be calculated via
$$\int_{-R}^{R}\int_{-\sqrt{R^2-z^2}}^{\sqrt{R^2-z^2}}\int_{-\sqrt{R^2-z^2-y^2}}^{\sqrt{R^2-z^2-y^2}}1\,\mathrm{dx\,dy\,dz}$$
However using a parametrisation with polar coordinates the Integral becomes:
$$\int_{0}^{2\,\pi}\int_{0}^{R}\int_{0}^{\pi} 1\,R^2\,\sin(\theta)\,\mathrm{d\theta}\,\mathrm{dR\,d\varphi}$$
Thinking closer about this I just don't see how these integrals are interchangeable. Notably substituting polar coordinates in the cartesian one I don't notice how the borders simplify.
For instance using the substitution $\left(\begin{array}{c}x \\ y \\z\end{array}\right)=\left(\begin{array}{c}R\,\cos(\varphi)\,\sin(\theta) \\ R\,\sin(\varphi)\,\sin(\theta)\\ R\,\cos(\theta)\end{array}\right)$ I get for the first border:
$\sqrt{R^2(1-\cos^2(\theta)-\sin^2(\theta)\,\sin^2(\varphi))}$. What's that even?