1
$\begingroup$

Using cartesian coordinates the volume of a sphere can be calculated via

$$\int_{-R}^{R}\int_{-\sqrt{R^2-z^2}}^{\sqrt{R^2-z^2}}\int_{-\sqrt{R^2-z^2-y^2}}^{\sqrt{R^2-z^2-y^2}}1\,\mathrm{dx\,dy\,dz}$$

However using a parametrisation with polar coordinates the Integral becomes:

$$\int_{0}^{2\,\pi}\int_{0}^{R}\int_{0}^{\pi} 1\,R^2\,\sin(\theta)\,\mathrm{d\theta}\,\mathrm{dR\,d\varphi}$$

Thinking closer about this I just don't see how these integrals are interchangeable. Notably substituting polar coordinates in the cartesian one I don't notice how the borders simplify.

For instance using the substitution $\left(\begin{array}{c}x \\ y \\z\end{array}\right)=\left(\begin{array}{c}R\,\cos(\varphi)\,\sin(\theta) \\ R\,\sin(\varphi)\,\sin(\theta)\\ R\,\cos(\theta)\end{array}\right)$ I get for the first border:

$\sqrt{R^2(1-\cos^2(\theta)-\sin^2(\theta)\,\sin^2(\varphi))}$. What's that even?

$\endgroup$
2
  • 1
    $\begingroup$ Well, if you had polar coordinates already, you wouldn't plug them into the top formula, you'd plug them into the bottom $\endgroup$ Commented Nov 20, 2021 at 14:30
  • 2
    $\begingroup$ If you simplify $\sqrt{R^2(1-\cos^2\theta-\sin^2\theta\sin^2\phi)}=\sqrt{R^2(\sin^2\theta-\sin^2\theta\sin^2\phi)}=\sqrt{R^2\sin^2\theta\cos^2\phi}=R\sin\theta\cos\phi=x$ this makes sense $\endgroup$ Commented Nov 20, 2021 at 14:32

2 Answers 2

1
$\begingroup$

Such as $x=-\sqrt{R^2-z^2-y^2}$ to $\sqrt{R^2-z^2-y^2}$ $$\int_{-R}^{R}\int_{-\sqrt{R^2-z^2}}^{\sqrt{R^2-z^2}}\int_{-\sqrt{R ^2-z^2-y^2}}^{\sqrt{R^2-z^2-y^2}}1\,\mathrm{dx\,dy\,dz}$$

so we can also do

$$2\int_{0}^{\pi}\int_{0}^{2\pi}\int_{0}^{R}\rho^2sen\varphi \,\mathrm{d\rho\,d\theta\,d\varphi}$$

with

$$x=\rho sen(\varphi)cos(\theta)$$ $$y=\rho sen(\varphi)sen(\theta)$$ $$z=\rho cos(\varphi)$$

then $$x^2+y^2+z^2=\rho^2sen^2(\varphi)(cos^2(\theta)+sen^2(\theta))+\rho^2cos^2(\varphi)=\rho^2sen^2(\varphi)+\rho^2cos^2(\varphi)=\rho^2$$

$\endgroup$
1
$\begingroup$

If $x=R\cos(\varphi)\sin(\theta)$, $y=R\sin(\varphi)\sin(\theta)$, and $z=R\cos(\theta)$, then\begin{align}x^2+y^2+z^2&=R^2\cos^2(\varphi)\sin^2(\theta)+R^2\sin^2(\varphi)\sin^2(\theta)+R^2\cos^2(\theta)\\&=R^2\bigl(\sin^2(\theta)+\cos^2(\theta)\bigr)\\&=R^2.\end{align}

$\endgroup$

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.