21
$\begingroup$

I have to compute this integral $$\int_{0}^{\infty} \frac{dt}{1+t^4}$$ to solve a problem in a homework. I have tried in many ways, but I'm stuck. A search in the web reveals me that it can be do it by methods of complex analysis. But I have not taken this course yet. Thanks for any help.

$\endgroup$
2
  • 10
    $\begingroup$ Complex Analysis is the best way to go about. Else write $1+t^4 = (1 + \sqrt{2} t + t^2 ) \times (1 - \sqrt{2} t + t^2 )$ and do partial fractions. $\endgroup$ Commented Jun 5, 2011 at 19:18
  • 1
    $\begingroup$ More solutions can be found in the following two questions: one and two. $\endgroup$ Commented Jan 9, 2015 at 4:53

8 Answers 8

18
$\begingroup$

Note that the substitution $t=1/u$ changes the integral to $$\int_0^\infty \frac{u^2}{1+u^4}du.$$ Doesn't sound very helpful, but there was extensive discussion of that here.

Added: But we can do better. Split the integral into into two parts, $0$ to $1$, and $1$ to infinity. On the second part, let $t=1/u$. We get $\int_0^1 \frac{u^2}{1+u^4}du$. Now $u$ has done its duty, and is discarded for the more popular $t$. Our original integral is equal to $$\int_0^1 \frac{1+t^2}{1+t^4} dt.$$

There is now a minor miracle. $$\frac{1}{1-\sqrt{2}t+t^2}+ \frac{1}{1+\sqrt{2}t+t^2}=\frac{2(1+t^2)}{1+t^4}.$$

Complete the square(s) as usual.

$\endgroup$
2
  • 20
    $\begingroup$ A nicer miracle: $ \displaystyle \int^1_0 \frac{1+t^2}{1+t^4} dt = \int^1_0 \frac{d(t-1/t) }{(t-1/t)^2+2} = \frac{1}{\sqrt{2}} \arctan \left( \frac{t-1/t}{\sqrt{2}} \right) \Bigg|^1_0 = \frac{\pi}{2\sqrt{2} }$ $\endgroup$ Commented Nov 15, 2011 at 6:45
  • $\begingroup$ Indeed it is nicer, symmetrizes in one swoop. $\endgroup$ Commented Nov 15, 2011 at 6:54
16
$\begingroup$

If you don't want to do a partial fraction decomposition, put $I:=\int_0^{+\infty}\frac{dt}{1+t^4}$. By the substitution $x=\frac 1t$ on $\left[0,+\infty\right)$ and $\left(-\infty,0\right]$, we get $2I = \int_{-\infty}^{+\infty}\frac{x^2}{1+x^4}\,dx$. Now we have \begin{align*} 4I &= \int_{-\infty}^{+\infty}\frac{t^2-\sqrt 2t+1}{(t^2-\sqrt 2t+1)(t^2+\sqrt 2t+1)}\,dt \\\ &=\int_{-\infty}^{+\infty}\frac{1}{t^2+\sqrt 2t+1}\,dt\\\ &=\int_{-\infty}^{+\infty}\frac{1}{(t+\frac{\sqrt 2}2)^2-\frac 12+1}\,dt\\\ &=\int_{-\infty}^{+\infty}\frac{du}{u^2+\frac 12}\\\ &=2\int_{-\infty}^{+\infty}\frac{du}{(\sqrt 2 u)^2+1}\\\ &=\frac 2{\sqrt 2}\arctan (\sqrt 2u)\mid_{u=-\infty}^{u=+\infty}\\\ &=\frac {2\pi}{\sqrt 2} \end{align*} and finally $I=\dfrac{\pi}{2\sqrt 2}$.

$\endgroup$
3
  • $\begingroup$ Why $4I$ is that you claim, in your first equality? $\endgroup$ Commented Jun 5, 2011 at 20:40
  • 3
    $\begingroup$ We have $2I =\int_{-\infty}^{+\infty}\frac{t^2}{1+t^4}dt =\int_{-\infty}^{+\infty}\frac{dt}{1+t^4}$, and I added these two terms. $\endgroup$ Commented Jun 5, 2011 at 20:45
  • $\begingroup$ ok. It's fine. Thank you. $\endgroup$ Commented Jun 5, 2011 at 21:32
13
$\begingroup$

$\newcommand{\+}{^{\dagger}}% \newcommand{\angles}[1]{\left\langle #1 \right\rangle}% \newcommand{\braces}[1]{\left\lbrace #1 \right\rbrace}% \newcommand{\bracks}[1]{\left\lbrack #1 \right\rbrack}% \newcommand{\ceil}[1]{\,\left\lceil #1 \right\rceil\,}% \newcommand{\dd}{{\rm d}}% \newcommand{\down}{\downarrow}% \newcommand{\ds}[1]{\displaystyle{#1}}% \newcommand{\equalby}[1]{{#1 \atop {= \atop \vphantom{\huge A}}}}% \newcommand{\expo}[1]{\,{\rm e}^{#1}\,}% \newcommand{\fermi}{\,{\rm f}}% \newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,}% \newcommand{\half}{{1 \over 2}}% \newcommand{\ic}{{\rm i}}% \newcommand{\iff}{\Longleftrightarrow} \newcommand{\imp}{\Longrightarrow}% \newcommand{\isdiv}{\,\left.\right\vert\,}% \newcommand{\ket}[1]{\left\vert #1\right\rangle}% \newcommand{\ol}[1]{\overline{#1}}% \newcommand{\pars}[1]{\left( #1 \right)}% \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\pp}{{\cal P}}% \newcommand{\root}[2][]{\,\sqrt[#1]{\,#2\,}\,}% \newcommand{\sech}{\,{\rm sech}}% \newcommand{\sgn}{\,{\rm sgn}}% \newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}} \newcommand{\ul}[1]{\underline{#1}}% \newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}$ With $\ds{x \equiv {1 \over 1 + t^{4}} \quad\iff\quad t = \pars{1 - x \over x}^{1/4}}$: \begin{align} & \color{#00f}{\large\int_{0}^{\infty}{\dd t \over 1 + t^{4}}} = \int_{1}^{0}x\,{1 \over 4}\,\pars{1 - x \over x}^{-3/4} \pars{-\,{1 \over x^{2}}}\,\dd x \\[5mm] = & \ {1 \over 4}\int_{0}^{1}x^{-1/4}\,\, \pars{1 - x}^{-3/4}\,\,\dd x = {1 \over 4}\,{\rm B}\pars{{3 \over 4},{1 \over 4}} \\[5mm] = & \ {1 \over 4}\,{\Gamma\pars{3/4}\Gamma\pars{1/4} \over \Gamma\pars{3/4 + 1/4}} ={1 \over 4}\,{\pi \over \sin\pars{\pi\bracks{1/4}}} \\[5mm] = & \ \begin{array}{|c|}\hline \rule{0pt}{1cm}\color{#00f}{\large{\root{2} \over 4}\,\pi} \\ \hline \end{array} \approx 1.1107 \end{align}

$\endgroup$
12
$\begingroup$

Let the considered integral be I i.e $$I=\int_0^{\infty} \frac{1}{1+t^4}\,dt$$ Under the transformation $t\mapsto 1/t$, the integral is: $$I=\int_0^{\infty} \frac{t^2}{1+t^4}\,dt \Rightarrow 2I=\int_0^{\infty}\frac{1+t^2}{1+t^4}\,dt=\int_0^{\infty} \frac{1+\frac{1}{t^2}}{t^2+\frac{1}{t^2}}\,dt$$ $$2I=\int_0^{\infty} \frac{1+\frac{1}{t^2}}{\left(t-\frac{1}{t}\right)^2+2}\,dt$$ Next, use the substitution $t-1/t=u \Rightarrow (1+1/t^2)\,dt=du$ to get: $$2I=\int_{-\infty}^{\infty} \frac{du}{u^2+2}\Rightarrow I=\int_0^{\infty} \frac{du}{u^2+2}=\boxed{\dfrac{\pi}{2\sqrt{2}}}$$ $\blacksquare$

$\endgroup$
10
$\begingroup$

You can also do it by partial fraction decomposition. We have $$ \frac{2\sqrt{2}}{1+t^4} = \frac{t + \sqrt{2}}{t^2 + \sqrt{2}t + 1} - \frac{t - \sqrt{2}}{t^2 - \sqrt{2}t + 1}. $$ We have $$\int_0^\infty \frac{dt}{t^2 \pm \sqrt{2}t + 1} = \int_0^\infty \frac{dt}{(t \pm \sqrt{2}/2)^2 + 1/2} = \int_0^\infty \frac{2dt}{(\sqrt{2} t \pm 1)^2 + 1} = \sqrt{2} \arctan (\sqrt{2}t \pm 1) \big|_0^\infty.$$ Continuing, we get $$\frac{\sqrt{2}\pi}{2} - \sqrt{2} \arctan (\pm 1) = \frac{\sqrt{2}\pi}{2} \mp \frac{\sqrt{2}}{4} = \frac{\sqrt{2}\pi (2 \mp 1)}{4}.$$ Next, we have $$ \int_0^\infty \frac{(2t \pm \sqrt{2}) dt}{t^2 \pm \sqrt{2}t + 1} = \log (t^2 \pm \sqrt{2}t + 1) \big|_0^\infty. $$ The integral doesn't converge, but we can consider instead $$ \int_0^\infty \frac{(2t + \sqrt{2}) dt}{t^2 + \sqrt{2}t + 1} - \frac{(2t - \sqrt{2}) dt}{t^2 - \sqrt{2}t + 1} = \log \frac{t^2 + \sqrt{2}t + 1}{t^2 - \sqrt{2}t + 1} \big|_0^\infty = 0. $$ Therefore we rewrite our initial expansion $$ \frac{4\sqrt{2}}{1+t^4} = \frac{2t + 2\sqrt{2}}{t^2 + \sqrt{2}t + 1} - \frac{2t - 2\sqrt{2}}{t^2 - \sqrt{2}t + 1} = \frac{2t + \sqrt{2}}{t^2 + \sqrt{2}t + 1} - \frac{2t - \sqrt{2}}{t^2 - \sqrt{2}t + 1} + \frac{\sqrt{2}}{t^2 + \sqrt{2}t + 1} + \frac{\sqrt{2}}{t^2 - \sqrt{2}t + 1}. $$ Integrating, we get $$ \int_0^\infty \frac{4\sqrt{2}}{1+t^4} = \sqrt{2} \frac{\sqrt{2} \pi (2-1)}{4} + \sqrt{2} \frac{\sqrt{2} \pi (2+1)}{4} = \frac{\pi}{2} + \frac{3\pi}{2} = 2\pi. $$ Therefore the integral we want is $$ \int_0^\infty \frac{1}{1 + t^4} = \frac{2\pi}{4\sqrt{2}} = \frac{\sqrt{2}\pi}{4}. $$

$\endgroup$
8
$\begingroup$

$1 + t^4 = (1 + 2t^2 + t^4) - 2t^2 = (1 + t^2)^2 - (\sqrt{2} t)^2$

This is a difference of squares and so can be factored. Once you've factored it, use partial fractions.

If you don't know that trick, you can do this:

$1+t^4=0$ iff $t^4 = -1$, so $t^2 = \pm i$. If $t^2 = i$, then $t = \pm \frac{1+i}{\sqrt{2}}$, and if $t^2 = -i$, then $t = \pm\frac{1-i}{\sqrt{2}}$. The way you get this is that when you multiply complex numbers, you add angles and multiply lengths; hence when you take the square root of a complex number, you take the square root of the length and cut the angle in half.

So now you've got $1+t^4 = \big( (t - (1+i)/\sqrt{2})(t - (1-i)/\sqrt{2})\big)\big((t - (-1+i)/\sqrt{2})(t - (-1-i)/\sqrt{2})\big)$. If you multiply the first two factors, you get $t^2 - t\sqrt{2} + 1$. If you multiply the last two factors, you get $t^2 + t\sqrt{2} + 1$.

Once you've factored the denominator, use partial fractions. You've got an irreducible quadratic factor in the denominator, so you'll get an arctangent.

$\endgroup$
0
2
$\begingroup$

$$ \begin{aligned} \int_0^{\infty} \frac{d t}{1+t^4}&=\int_0^{\infty} \frac{\frac{1}{t^2}}{t^2+\frac{1}{t^2}} d t \\=& \frac{1}{2} \int_0^{\infty} \frac{\left(1+\frac{1}{t^2}\right)-\left(1-\frac{1}{t^2}\right)}{t^2+\frac{1}{t^2}} d t \\ =& \frac{1}{2}\left[\int_0^{\infty} \frac{d\left(t-\frac{1}{t}\right)}{\left(t-\frac{1}{t}\right)^2+2}-\int_0^{\infty} \frac{d\left(t+\frac{1}{t}\right)}{\left(t+\frac{1}{t}\right)^2-2}\right]_0^{\infty} \\ =& \frac{1}{2 \sqrt{2}}\left[\tan ^{-1}\left(\frac{t-\frac{1}{t}}{\sqrt{2}}\right)\right]_0^{\infty}-\frac{1}{2 \sqrt{2}}\left[\ln \left|\frac{t+\frac{1}{t}-\sqrt{2}}{t+\frac{1}{t}+\sqrt{2}} \right|\right]_0^{\infty}\\ =& \frac{\pi}{2 \sqrt{2}} \end{aligned} $$

$\endgroup$
1
  • 2
    $\begingroup$ The starting integral should have the power of $t$ as $4$ and not $2$. $\endgroup$ Commented May 10 at 11:17
0
$\begingroup$

\begin{align} \int_0^{\infty}\frac{dt}{1+t^4} &=\int_0^{\infty}\int_0^{\infty}e^{-s(1+t^4)}\,ds\,dt & \\ &=\int_0^{\infty}e^{-s}\int_0^{\infty}e^{-st^4}\,dt\,ds & \left[t=\left(\frac{x}{s}\right)^{1/4}\right] \\ &=\frac{1}{4}\int_0^{\infty}s^{-1/4}e^{-s}\,ds\int_0^{\infty}x^{-3/4}e^{-x}\,dx & \left[\Gamma(z)=\int_0^{\infty}t^{z-1}e^{-t}\,dt\right]\\ &=\frac{1}{4}\Gamma\!\left(\frac{3}{4}\right)\Gamma\!\left(\frac{1}{4}\right) & \left[\Gamma(1-z)\Gamma(z)=\frac{\pi}{\sin(\pi z)}\right] \\ &=\frac{\pi}{4\sin\left(\frac{\pi}{4}\right)} & \\ &=\frac{\pi}{2\sqrt{2}} \end{align}

$\endgroup$

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.