2
$\begingroup$

What is the value of this definite integral? $$\int_{0}^{\pi/2}\frac{1}{1+\tan^{101}x}dx$$

I am trying to think it in this way- as x approaches $\pi /2$ tan x approaches infinity so the denominator of the function will approach 0. But summing it over the interval is not very clear to me. Next I tried to break the tan function int o sin and cos and got $\dfrac{\cos^{101}(x)}{\cos^{101}(x)+\sin^{101}(x)}$ but I am unable to move further .So what should be done in the problem?

$\endgroup$
2
  • 1
    $\begingroup$ Please edit your question so it makes sense. Hint: what happens if you substitute $u=\frac{\pi}{2}-x$? $\endgroup$ Commented Nov 1, 2023 at 9:36
  • $\begingroup$ Oh yes got the answer thank you very much @David Quinn $\endgroup$ Commented Nov 1, 2023 at 9:53

2 Answers 2

5
$\begingroup$

Let $u=\frac\pi2-x\Rightarrow\mathrm{d}u=-\mathrm{d}x$.

Then, $$\begin{align}\int_0^\frac\pi2\frac1{1+\tan^{101}x}\,\mathrm{d}x&=-\int_\frac\pi2^0\frac1{1+\tan^{101}\left(\frac\pi2-u\right)}\,\mathrm{d}u\\&=\int_0^\frac\pi2\frac1{1+\cot^{101}u}\,\mathrm{d}u\\&=\int_0^\frac\pi2\frac{\tan^{101}u}{1+\tan^{101}u}\,\mathrm{d}u\\&=\int_0^\frac\pi2\frac{\tan^{101}x}{1+\tan^{101}x}\,\mathrm{d}x\\&=\int_0^\frac\pi2\mathrm{d}x-\int_0^\frac\pi2\frac1{1+\tan^{101}x}\,\mathrm{d}x\end{align}$$ From this we can now evaluate the required integral. $$\begin{align}\int_0^\frac\pi2\frac1{1+\tan^{101}x}\,\mathrm{d}x&=\frac12\int_0^\frac\pi2\mathrm{d}x\\&=\frac12\left[x\right]_0^\frac\pi2\\&=\boxed{\frac\pi4}\end{align}$$

$\endgroup$
2
$\begingroup$

$$I=\int_{0}^{\pi/2}\frac{1}{1+\tan^{101}x}dx$$

$$I=\int_0^{\frac{\pi}{2}}\frac{\cos^{101}(x)}{\cos^{101}(x)+\sin^{101}(x)}\,dx$$

Use the King's Property;

$$I=\int_0^{\frac{\pi}{2}}\frac{\sin^{101}(x)}{\cos^{101}(x)+\sin^{101}(x)}\,dx$$

Add both integrals;

$$2I=\int_0^{\frac{\pi}{2}}\frac{\sin^{101}(x)+\cos^{101}(x)}{\cos^{101}(x)+\sin^{101}(x)}\,dx=\int_0^{\frac{\pi}{2}}\,dx=\frac{\pi}{2}$$

$$I=\frac{\pi}{4}$$


The original integral can be generalized (similar steps);

$$I=\int_{0}^{\pi/2}\frac{1}{1+\tan^{n}x}dx=\frac{\pi}{4}$$

$\endgroup$

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.