I wonder if the following proposition holds: $\def\vb{\boldsymbol}$ $\def\pdv#1#2{\frac{\partial #1}{\partial #2}}$
Suppose $D,G\subseteq\mathbb{R}^n$, function $\vb{T}\colon D \to G,(x_1,x_2,\dotsc,x_n)\mapsto(y_1,y_2,\dotsc,y_n)$ is $C^1$ diffeomorphic, then$$ \begin{vmatrix} \pdv{y_1}{x_1} & \pdv{y_1}{x_2} & \dots & \pdv{y_1}{x_n} \\ \pdv{y_2}{x_1} & \pdv{y_2}{x_2} & \dots & \pdv{y_2}{x_n} \\ \vdots & \vdots & & \vdots \\ \pdv{y_n}{x_1} & \pdv{y_n}{x_2} & \dots & \pdv{y_n}{x_n} \\ \end{vmatrix} \begin{vmatrix} \pdv{x_1}{y_1} & \pdv{x_1}{y_2} & \dots & \pdv{x_1}{y_n} \\ \pdv{x_2}{y_1} & \pdv{x_2}{y_2} & \dots & \pdv{x_2}{y_n} \\ \vdots & \vdots & & \vdots \\ \pdv{x_n}{y_1} & \pdv{x_n}{y_2} & \dots & \pdv{x_n}{y_n} \\ \end{vmatrix} = 1. $$
So far I deduced that \begin{align*} &\begin{vmatrix} \pdv{y_1}{x_1} & \pdv{y_1}{x_2} & \dots & \pdv{y_1}{x_n} \\ \pdv{y_2}{x_1} & \pdv{y_2}{x_2} & \dots & \pdv{y_2}{x_n} \\ \vdots & \vdots & & \vdots \\ \pdv{y_n}{x_1} & \pdv{y_n}{x_2} & \dots & \pdv{y_n}{x_n} \\ \end{vmatrix} \begin{vmatrix} \pdv{x_1}{y_1} & \pdv{x_1}{y_2} & \dots & \pdv{x_1}{y_n} \\ \pdv{x_2}{y_1} & \pdv{x_2}{y_2} & \dots & \pdv{x_2}{y_n} \\ \vdots & \vdots & & \vdots \\ \pdv{x_n}{y_1} & \pdv{x_n}{y_2} & \dots & \pdv{x_n}{y_n} \\ \end{vmatrix} \\ &= \det\left( \begin{bmatrix} \pdv{y_1}{x_1} & \pdv{y_1}{x_2} & \dots & \pdv{y_1}{x_n} \\ \pdv{y_2}{x_1} & \pdv{y_2}{x_2} & \dots & \pdv{y_2}{x_n} \\ \vdots & \vdots & & \vdots \\ \pdv{y_n}{x_1} & \pdv{y_n}{x_2} & \dots & \pdv{y_n}{x_n} \\ \end{bmatrix} \begin{bmatrix} \pdv{x_1}{y_1} & \pdv{x_1}{y_2} & \dots & \pdv{x_1}{y_n} \\ \pdv{x_2}{y_1} & \pdv{x_2}{y_2} & \dots & \pdv{x_2}{y_n} \\ \vdots & \vdots & & \vdots \\ \pdv{x_n}{y_1} & \pdv{x_n}{y_2} & \dots & \pdv{x_n}{y_n} \\ \end{bmatrix} \right) \\ &= \begin{vmatrix} \sum_{k=1}^n \pdv{y_1}{x_k} \pdv{x_k}{y_1} & \sum_{k=1}^n \pdv{y_1}{x_k} \pdv{x_k}{y_2} & \dots & \sum_{k=1}^n \pdv{y_1}{x_k} \pdv{x_k}{y_n} \\ \sum_{k=1}^n \pdv{y_2}{x_k} \pdv{x_k}{y_1} & \sum_{k=1}^n \pdv{y_2}{x_k} \pdv{x_k}{y_2} & \dots & \sum_{k=1}^n \pdv{y_2}{x_k} \pdv{x_k}{y_n} \\ \vdots & \vdots & & \vdots \\ \sum_{k=1}^n \pdv{y_n}{x_k} \pdv{x_k}{y_1} & \sum_{k=1}^n \pdv{y_n}{x_k} \pdv{x_k}{y_2} & \dots & \sum_{k=1}^n \pdv{y_n}{x_k} \pdv{x_k}{y_n} \\ \end{vmatrix}. \end{align*}
I've no idea what to do next because it's not possible to eliminate partial derivatives like $$ \pdv{y_i}{x_j} \pdv{x_j}{y_i} = 1. $$