3
$\begingroup$

I wonder if the following proposition holds: $\def\vb{\boldsymbol}$ $\def\pdv#1#2{\frac{\partial #1}{\partial #2}}$

Suppose $D,G\subseteq\mathbb{R}^n$, function $\vb{T}\colon D \to G,(x_1,x_2,\dotsc,x_n)\mapsto(y_1,y_2,\dotsc,y_n)$ is $C^1$ diffeomorphic, then$$ \begin{vmatrix} \pdv{y_1}{x_1} & \pdv{y_1}{x_2} & \dots & \pdv{y_1}{x_n} \\ \pdv{y_2}{x_1} & \pdv{y_2}{x_2} & \dots & \pdv{y_2}{x_n} \\ \vdots & \vdots & & \vdots \\ \pdv{y_n}{x_1} & \pdv{y_n}{x_2} & \dots & \pdv{y_n}{x_n} \\ \end{vmatrix} \begin{vmatrix} \pdv{x_1}{y_1} & \pdv{x_1}{y_2} & \dots & \pdv{x_1}{y_n} \\ \pdv{x_2}{y_1} & \pdv{x_2}{y_2} & \dots & \pdv{x_2}{y_n} \\ \vdots & \vdots & & \vdots \\ \pdv{x_n}{y_1} & \pdv{x_n}{y_2} & \dots & \pdv{x_n}{y_n} \\ \end{vmatrix} = 1. $$

So far I deduced that \begin{align*} &\begin{vmatrix} \pdv{y_1}{x_1} & \pdv{y_1}{x_2} & \dots & \pdv{y_1}{x_n} \\ \pdv{y_2}{x_1} & \pdv{y_2}{x_2} & \dots & \pdv{y_2}{x_n} \\ \vdots & \vdots & & \vdots \\ \pdv{y_n}{x_1} & \pdv{y_n}{x_2} & \dots & \pdv{y_n}{x_n} \\ \end{vmatrix} \begin{vmatrix} \pdv{x_1}{y_1} & \pdv{x_1}{y_2} & \dots & \pdv{x_1}{y_n} \\ \pdv{x_2}{y_1} & \pdv{x_2}{y_2} & \dots & \pdv{x_2}{y_n} \\ \vdots & \vdots & & \vdots \\ \pdv{x_n}{y_1} & \pdv{x_n}{y_2} & \dots & \pdv{x_n}{y_n} \\ \end{vmatrix} \\ &= \det\left( \begin{bmatrix} \pdv{y_1}{x_1} & \pdv{y_1}{x_2} & \dots & \pdv{y_1}{x_n} \\ \pdv{y_2}{x_1} & \pdv{y_2}{x_2} & \dots & \pdv{y_2}{x_n} \\ \vdots & \vdots & & \vdots \\ \pdv{y_n}{x_1} & \pdv{y_n}{x_2} & \dots & \pdv{y_n}{x_n} \\ \end{bmatrix} \begin{bmatrix} \pdv{x_1}{y_1} & \pdv{x_1}{y_2} & \dots & \pdv{x_1}{y_n} \\ \pdv{x_2}{y_1} & \pdv{x_2}{y_2} & \dots & \pdv{x_2}{y_n} \\ \vdots & \vdots & & \vdots \\ \pdv{x_n}{y_1} & \pdv{x_n}{y_2} & \dots & \pdv{x_n}{y_n} \\ \end{bmatrix} \right) \\ &= \begin{vmatrix} \sum_{k=1}^n \pdv{y_1}{x_k} \pdv{x_k}{y_1} & \sum_{k=1}^n \pdv{y_1}{x_k} \pdv{x_k}{y_2} & \dots & \sum_{k=1}^n \pdv{y_1}{x_k} \pdv{x_k}{y_n} \\ \sum_{k=1}^n \pdv{y_2}{x_k} \pdv{x_k}{y_1} & \sum_{k=1}^n \pdv{y_2}{x_k} \pdv{x_k}{y_2} & \dots & \sum_{k=1}^n \pdv{y_2}{x_k} \pdv{x_k}{y_n} \\ \vdots & \vdots & & \vdots \\ \sum_{k=1}^n \pdv{y_n}{x_k} \pdv{x_k}{y_1} & \sum_{k=1}^n \pdv{y_n}{x_k} \pdv{x_k}{y_2} & \dots & \sum_{k=1}^n \pdv{y_n}{x_k} \pdv{x_k}{y_n} \\ \end{vmatrix}. \end{align*}

I've no idea what to do next because it's not possible to eliminate partial derivatives like $$ \pdv{y_i}{x_j} \pdv{x_j}{y_i} = 1. $$

$\endgroup$
2
  • 2
    $\begingroup$ Have you considered what this looks like from the perspective of the chain rule? $\frac{dx}{dx}=\frac{\partial x}{\partial y_1}\frac{\partial y_1}{\partial x}+\frac{\partial x}{\partial y_2}\frac{\partial y_2}{\partial x}+..$ $\endgroup$ Commented Sep 23, 2024 at 15:15
  • 3
    $\begingroup$ Partial derivatives can't cancel like that. You can interpret this as evidence that partial derivatives are not fractions, or that $\partial x_j$ actually hides some information, so it's not the same object on the numerator and denominator. $\endgroup$ Commented Sep 23, 2024 at 15:40

2 Answers 2

3
$\begingroup$

Just an illustration with the Cartesian and polar coordinates:

$$\begin{vmatrix}\cos\theta&-r\sin\theta\\\sin\theta&r\cos\theta\end{vmatrix}=r$$

$$\begin{vmatrix}\dfrac x{\sqrt{x^2+y^2}}&\dfrac y{\sqrt{x^2+y^2}}\\-\dfrac y{x^2+y^2}&\dfrac x{x^2+y^2}\end{vmatrix}=\dfrac1{\sqrt{x^2+y^2}}$$

As

$$\begin{pmatrix}\dfrac x{\sqrt{x^2+y^2}}&\dfrac y{\sqrt{x^2+y^2}}\\-\dfrac y{x^2+y^2}&\dfrac x{x^2+y^2}\end{pmatrix}=\begin{pmatrix}\cos\theta&\sin\theta\\-\dfrac{\sin\theta}r&\dfrac{\cos\theta}r\end{pmatrix}=\begin{pmatrix}\cos\theta&-r\sin\theta\\\sin\theta&r\cos\theta\end{pmatrix}^{-1},$$ we verify that the matrices are indeed inverses of each other.

$\endgroup$
1
  • $\begingroup$ The answer is in my answer. Set $r=0$. $\endgroup$ Commented Sep 23, 2024 at 16:24
2
$\begingroup$

$$\begin{align*}\mathrm{d}y_i=&\frac{\partial y_i}{\partial x_j}\mathrm{d}x_j\\=&\frac{\partial y_i}{\partial x_j}\frac{\partial x_j}{\partial y_l}\mathrm{d}y_l\end{align*}$$

Thus

$$\frac{\partial y_i}{\partial x_j}\frac{\partial x_j}{\partial y_l}=\mathrm{\delta}_{il}$$

$\endgroup$
0

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.