Below is a problem I did. Part (a) is correct so you can skip over it. Part (b) is wrong. I want to know where I went wrong.
Problem:
Suppose that the length of time $Y$ that it takes a worker to complete a certain task has probability density function: $$ f(y) = \begin{cases} e^{-(y-\theta)} & \text{ for } y > \theta \\ 0 & \text{elsewhere} \end{cases} $$ where $\theta$ is a positive constant that represents the minimum time to task completion. Let $Y_1,Y_2,...Y_n$ denote a random sample of completion times from this distribution.
(a) Find the density function for $Y_{(1)} = min( Y_1,Y_2,... Y_n )$.
(b) Find $E( Y_{(1)} )$,
Answer: (a)
We know $f(y)$ and now we find $F(y)$. \begin{align*} F(Y) &= \int_{\theta}^Y e^{-(y-\theta)} \,\, dy \\ F(Y) &= \int_{\theta}^Y e^{\theta}e^{-y} \,\, dy \\ F(Y) &= -e^{\theta}e^{-y} \bigg|_{\theta}^{Y} \\ F(Y) &= -e^{\theta}e^{-Y} + e^{\theta} e^{-\theta} \\ F(Y) &= -e^{\theta}e^{-Y} + 1 \\ F(Y) &= 1 -e^{\theta}e^{-Y} \\ \end{align*} Let $g_1(y)$ be the density function the problem asks us to find. We have: $$ g_1(y) = n\left( 1 - F(y) \right)^{n-1} f(y) $$ This means that our answer will have a $n$ in it which is to be expected given how the problem is setup. \begin{align*} g_1(y) &= n\left( 1 - \left( 1 -e^{\theta}e^{-Y} \right) \right)^{n-1} e^{-(y-\theta)} \\ g_1(y) &= n\left( e^{\theta}e^{-Y} \right)^{n-1} e^{-(y-\theta)} \\ g_1(y) &= ne^{n\theta-yn} \end{align*} Hence the answer is: $$ f(y) = \begin{cases} ne^{-n(y - \theta)} & \text{ for } y > \theta \\ 0 & \text{elsewhere} \end{cases} $$ Now for part (b): \begin{align*} E(Y_{(1)}) &= \int_{\theta}^{\infty} y n e^{-n(y - \theta)} \, dy \\ E( Y_{(1)} ) &= ne^{n \theta} \int_{\theta}^{\infty} ye^{-ny} \,\, dy \\ \end{align*} Now we need to perform the following integration: $$ \int_{\theta}^{\infty} ye^{-ny} \,\, dy $$ We can do this using integration by parts with $u = y$ and $dv = e^{-ny} \,\, dy$. \begin{align*} du &= dy \\ v &= - \dfrac{ e^{-ny} }{n} \\ \int_{\theta}^{\infty} ye^{-ny} \,\, dy &= - \dfrac{ ye^{-ny} }{n} \bigg|_{\theta}^{\infty} + \int_{\theta}^{\infty} \dfrac{ e^{-ny} }{n} \,\, dy \\ % - \dfrac{ ye^{-ny} }{n} \bigg|_{\theta}^{\infty} &= 0 + \theta e^{ -n \theta } = \theta e^{ -n \theta } \\ % \int_{\theta}^{\infty} \dfrac{ e^{-ny} }{n} \,\, dy &= \dfrac{ e^{-ny} }{n^2} \bigg|_{\theta}^{\infty} \\ \int_{\theta}^{\infty} \dfrac{ e^{-ny} }{n} \,\, dy &= 0 - \dfrac{ e^{-n \theta } } {n^2} \\ \int_{\theta}^{\infty} \dfrac{ e^{-ny} }{n} \,\, dy &= - \dfrac{ e^{-n \theta } } {n^2} \\ \int_{\theta}^{\infty} ye^{-ny} \,\, dy &= \theta e^{ -n \theta } - \dfrac{ e^{-n \theta } } {n^2} \\ % E( Y_{(1)} ) &= ne^{n \theta} \left( \theta e^{ -n \theta } - \dfrac{ e^{-n \theta } } {n^2} \right) \\ E( Y_{(1)} ) &= n\theta - \dfrac{ 1 }{n } \end{align*} My answer is wrong. The book's answer is: $$ \theta + \dfrac{1}{n} $$ Where did I go wrong?