0
$\begingroup$

Below is a problem I did. Part (a) is correct so you can skip over it. Part (b) is wrong. I want to know where I went wrong.

Problem:

Suppose that the length of time $Y$ that it takes a worker to complete a certain task has probability density function: $$ f(y) = \begin{cases} e^{-(y-\theta)} & \text{ for } y > \theta \\ 0 & \text{elsewhere} \end{cases} $$ where $\theta$ is a positive constant that represents the minimum time to task completion. Let $Y_1,Y_2,...Y_n$ denote a random sample of completion times from this distribution.
(a) Find the density function for $Y_{(1)} = min( Y_1,Y_2,... Y_n )$.
(b) Find $E( Y_{(1)} )$,

Answer: (a)

We know $f(y)$ and now we find $F(y)$. \begin{align*} F(Y) &= \int_{\theta}^Y e^{-(y-\theta)} \,\, dy \\ F(Y) &= \int_{\theta}^Y e^{\theta}e^{-y} \,\, dy \\ F(Y) &= -e^{\theta}e^{-y} \bigg|_{\theta}^{Y} \\ F(Y) &= -e^{\theta}e^{-Y} + e^{\theta} e^{-\theta} \\ F(Y) &= -e^{\theta}e^{-Y} + 1 \\ F(Y) &= 1 -e^{\theta}e^{-Y} \\ \end{align*} Let $g_1(y)$ be the density function the problem asks us to find. We have: $$ g_1(y) = n\left( 1 - F(y) \right)^{n-1} f(y) $$ This means that our answer will have a $n$ in it which is to be expected given how the problem is setup. \begin{align*} g_1(y) &= n\left( 1 - \left( 1 -e^{\theta}e^{-Y} \right) \right)^{n-1} e^{-(y-\theta)} \\ g_1(y) &= n\left( e^{\theta}e^{-Y} \right)^{n-1} e^{-(y-\theta)} \\ g_1(y) &= ne^{n\theta-yn} \end{align*} Hence the answer is: $$ f(y) = \begin{cases} ne^{-n(y - \theta)} & \text{ for } y > \theta \\ 0 & \text{elsewhere} \end{cases} $$ Now for part (b): \begin{align*} E(Y_{(1)}) &= \int_{\theta}^{\infty} y n e^{-n(y - \theta)} \, dy \\ E( Y_{(1)} ) &= ne^{n \theta} \int_{\theta}^{\infty} ye^{-ny} \,\, dy \\ \end{align*} Now we need to perform the following integration: $$ \int_{\theta}^{\infty} ye^{-ny} \,\, dy $$ We can do this using integration by parts with $u = y$ and $dv = e^{-ny} \,\, dy$. \begin{align*} du &= dy \\ v &= - \dfrac{ e^{-ny} }{n} \\ \int_{\theta}^{\infty} ye^{-ny} \,\, dy &= - \dfrac{ ye^{-ny} }{n} \bigg|_{\theta}^{\infty} + \int_{\theta}^{\infty} \dfrac{ e^{-ny} }{n} \,\, dy \\ % - \dfrac{ ye^{-ny} }{n} \bigg|_{\theta}^{\infty} &= 0 + \theta e^{ -n \theta } = \theta e^{ -n \theta } \\ % \int_{\theta}^{\infty} \dfrac{ e^{-ny} }{n} \,\, dy &= \dfrac{ e^{-ny} }{n^2} \bigg|_{\theta}^{\infty} \\ \int_{\theta}^{\infty} \dfrac{ e^{-ny} }{n} \,\, dy &= 0 - \dfrac{ e^{-n \theta } } {n^2} \\ \int_{\theta}^{\infty} \dfrac{ e^{-ny} }{n} \,\, dy &= - \dfrac{ e^{-n \theta } } {n^2} \\ \int_{\theta}^{\infty} ye^{-ny} \,\, dy &= \theta e^{ -n \theta } - \dfrac{ e^{-n \theta } } {n^2} \\ % E( Y_{(1)} ) &= ne^{n \theta} \left( \theta e^{ -n \theta } - \dfrac{ e^{-n \theta } } {n^2} \right) \\ E( Y_{(1)} ) &= n\theta - \dfrac{ 1 }{n } \end{align*} My answer is wrong. The book's answer is: $$ \theta + \dfrac{1}{n} $$ Where did I go wrong?

$\endgroup$
1
  • 3
    $\begingroup$ In the step where you plugged into $-\frac{ye^{-ny}}{n}\Big|_{\theta}^{\infty}$, you dropped the $\frac{1}{n}$ when plugging in the lower bound $\theta$, probably inadvertenly. And in the step where you solved $\int_{\theta}^{\infty} \frac{e^{-ny}}{n} \, dy$, the $\theta$ is the lower bound, so the minus sign cancels out and becomes positive. Be careful with the integral bounds! $\endgroup$ Commented Jun 20 at 3:44

2 Answers 2

0
$\begingroup$

I am guessing this is why you asked the other question too xD.

Your calculation is mostly correct, but there's a sign error in the second integral.

If we go through the entire thing once, you have stuff correctly set up: $$\int_{\theta}^{\infty} ye^{-ny} \,\, dy = - \dfrac{ ye^{-ny} }{n} \bigg|_{\theta}^{\infty} + \int_{\theta}^{\infty} \dfrac{ e^{-ny} }{n} \,\, dy$$

The first term is correct: $$- \dfrac{ ye^{-ny} }{n} \bigg|_{\theta}^{\infty} = 0 + \frac{\theta e^{-n\theta}}{n} = \frac{\theta e^{-n\theta}}{n}$$

The error is in the second integral.

You wrote: $$\int_{\theta}^{\infty} \dfrac{ e^{-ny} }{n} \,\, dy = \dfrac{ e^{-ny} }{n^2} \bigg|_{\theta}^{\infty} = 0 - \dfrac{ e^{-n \theta } } {n^2} = - \dfrac{ e^{-n \theta } } {n^2}$$

but this should be: $$\int_{\theta}^{\infty} \dfrac{ e^{-ny} }{n} \,\, dy = \frac{1}{n} \int_{\theta}^{\infty} e^{-ny} dy = \frac{1}{n} \left[-\frac{e^{-ny}}{n}\right]_{\theta}^{\infty}$$

$$= \frac{1}{n} \left(0 - \left(-\frac{e^{-n\theta}}{n}\right)\right) = \frac{1}{n} \cdot \frac{e^{-n\theta}}{n} = +\frac{e^{-n\theta}}{n^2}$$

Basically when you evaluate $\left[-\frac{e^{-ny}}{n}\right]_{\theta}^{\infty}$, you get: $$0 - \left(-\frac{e^{-n\theta}}{n}\right) = +\frac{e^{-n\theta}}{n}$$

So the correct calculation should be: $$\int_{\theta}^{\infty} ye^{-ny} \,\, dy = \frac{\theta e^{-n\theta}}{n} + \frac{e^{-n\theta}}{n^2}$$

So finally I guess we can match the book's answer.

$$E(Y_{(1)}) = ne^{n\theta} \left(\frac{\theta e^{-n\theta}}{n} + \frac{e^{-n\theta}}{n^2}\right) = \theta + \frac{1}{n}$$

$\endgroup$
3
  • $\begingroup$ You wrote: I am guessing this is why you asked the other question too xD. Your guess is correct. $\endgroup$ Commented Jun 20 at 3:52
  • 1
    $\begingroup$ Haha, cheers :P $\endgroup$ Commented Jun 20 at 3:53
  • $\begingroup$ The other question being math.stackexchange.com/questions/5076949/… $\endgroup$ Commented Jun 20 at 8:37
0
$\begingroup$

Alternatively, you can make use of the gamma function:

If $t=n(y-\theta)$, then $y=\theta+\dfrac tn$ and $dy = \dfrac1n dt$; so, \begin{align} E[Y_{(1)}] &= \int_\theta^\infty nye^{-n(y-\theta)} \, dy \\ &= \int_0^\infty n \Big( \theta+\frac tn \Big) e^{-t} \, \frac1n dt \\ &= \theta \underbrace{\int_0^\infty e^{-t} \, dt}_{=\,\Gamma(1)\,=\,1} + \frac1n \underbrace{\int_0^\infty te^{-t} \, dt}_{=\,\Gamma(2)\,=\,1} = \theta + \frac1n \end{align}

$\endgroup$

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.