I'm reading "A guide to mathematical methods for physicists" by Petrini, Pradisi and Zaffaroni, volume 2. At the beginning of chapter 6, the authors tell that
a solution $G$ of the equation:
$$ L_\mathbf{x}G(\mathbf{x}) = \delta(\mathbf{x}) $$
where $\delta(\mathbf{x}) = \prod_{i=1}^d \delta(x_i)$, is called fundamental solution for $L_\mathbf{x}$ in $\mathbb{R^n}$. [...] Fundamental solutions are important because they allow to determine a particular solution of the inhomogeneous equation
$$ L_\mathbf{x}f(\mathbf{x}) = h(\mathbf{x}) $$
as the convolution
$$ f(\mathbf{x}) = (G * h)(\mathbf{x}) = \int_{\mathbb{R}^n} G(\mathbf{x - y}) h(\mathbf{y}) d\mathbf{y} $$
However in Example 6.3, in which the fundamental solution of the harmonic oscillator is considered ($G''(x) + \omega^2 G(x) = \delta(x)$) it is told:
We find the general solution
$$ G(x) = \theta(x) \frac{\sin \omega x}{\omega} + \nu_1 e^{i \omega > x} + \nu_2 e^{-i \omega x} $$
The solution to the inhomogeneous equation
$$ f''(x) + \omega^2 f(x) = g(x) $$
is then given by
$$ f(x) = \int_{\mathbb{R}} G(x - y) g(y) dy = \int_{\mathbb{R}}\theta(x - y) \frac{\sin \omega (x - y)}{\omega} g(y) dy + C_1 e^{i\omega x} + C_2 e^{-i \omega x} $$
where $C_1 = \nu_1 \int_{\mathbb{R}}e^{-i\omega x} g(y) dy$ and $C_2 =\nu_2 \int_{\mathbb{R}}e^{i\omega x} g(y) dy$. The same result can be obtained with the method of variation of arbitrary constants.
I find it contradictory that $G(x)$ is said to be the function which convolved with the source term gives a particular solution and calling the solution general in the example. Moreover in the example is said that the $f(x)$ obtained is a particular solution, but it seems to be the sum of an integral and of a linear combination of solution of the homogeneous equation, shouldn't it be the general solution then?
Moreover, in some of my exams, for example the one whose solution I've pasted below, it is given a boundary value problem based on an ODE
- L'equazione omogenea associata al problema sotto esame è un'equazione di Euler, con soluzioni fondamentali date da $1/x$ ed $x$. Le due soluzioni dell'omogenea che rispettano le condizioni al contorno separatamente in $x = 1 e x = 2$ sono date da,
$f_1(x)=\frac{1}{x}-x,\quad f_2(x)=\frac{1}{x}-\frac{x}{4},$
tali che $f_1(1)=0$, $f_1(2)\neq0$, $f_2(1)\neq0$ e $f_2(2)=0$. Il Wronskiano corrispondente è dato da $W(x)=f_1(x)f_2'(x)-f_1'(x)f_2(x)=\frac{3}{2x}$. L'espressione per la funzione di Green in questi casi è,
$G(x,y)=\frac{1}{a_2(y)W(y)}\left[f_1(x)f_2(y)\theta(y-x)+f_1(y)f_2(x)\theta(x-y)\right]$
$=\frac{2}{3y}\left[\left(\frac{1}{x}-x\right)\left(\frac{1}{y}-\frac{y}{4}\right)\theta(y-x)+\left(\frac{1}{y}-y\right)\left(\frac{1}{x}-\frac{x}{4}\right)\theta(x-y)\right]$
$=\frac{2}{3}\left[\left(\frac{1}{x}-x\right)\left(\frac{1}{y^2}-\frac{1}{4}\right)\theta(y-x)+\left(\frac{1}{y^2}-1\right)\left(\frac{1}{x}-\frac{x}{4}\right)\theta(x-y)\right],$
La soluzione dell'equazione differenziale non-omogenea è, quindi,
$f(x)=\int_1^2dy\,G(x,y)y^2=\frac{2}{3}\left[\left(\frac{1}{x}-x\right)\int_x^2dy\left(1-\frac{y^2}{4}\right)+\left(\frac{1}{x}-\frac{x}{4}\right)\int_x^1dy\left(1-y^2\right)\right]$
$=\frac{2}{3}\left[\left(\frac{1}{x}-x\right)\left(\frac{4}{3}-x+\frac{x^3}{12}\right)+\left(\frac{1}{x}-\frac{x}{4}\right)\left(x-\frac{x^3}{3}-\frac{2}{3}\right)\right]=\frac{4}{9x}-\frac{7x}{9}+\frac{x^2}{3}.$
The Green's function is found using:
$$ G(x, \xi) = \frac{1}{W(\xi) a_2(\xi)} \left[ \theta(\xi - x) y_2(\xi) y_1(x) + \theta(x - \xi) y_1(\xi) y_2(x) \right] \tag{1}$$
now $f(x) = \int_{1}^2 G(x, y)y^2 dy$ is said to be the solution of the ODE without specifying if general or particular, however, since the exercise asks to solve the ODE, I assume it is the general solution of the ODE.
My question is: what do Green's functions let you find using the convolution: general or particular solutions? The Green's function found in (1), convolved, results in a general or in a particular solution?