1
$\begingroup$

This is my first proof and is most likely going to be crude. Please while reading comment tips about ways to improve my writing.

Polar coordinates are transformed through: $$x=r\cos(\theta) \qquad y=r\sin(\theta).$$ Spherical coordinates are transformed through: $$x=r\sin(\phi)\cos(\theta) \qquad y=r\sin(\phi)\sin(\theta) \qquad z=r\cos(\phi).$$ 4th dimensional spherical coordinates, or hyperspherical coordinates, are transformed through: $$x=r\sin(\epsilon)\sin(\phi)\cos(\theta) \qquad y=r\sin(\epsilon)\sin(\phi)\sin(\theta) \qquad z=r\sin(\epsilon)\cos(\phi) \qquad w=r\cos(\epsilon).$$

For 2 dimensions, the Jacobian is: $$\frac{\partial(x,y)}{\partial(r,\theta)}=\begin{bmatrix}\cos(\theta)&-r\sin(\theta)\\\sin(\theta)&r\cos(\theta)\end{bmatrix}=r.$$

For 3 Dimensions, the Jacobian is: $$\frac{\partial(x,y,z)}{\partial(r,\theta,\phi)}=\begin{bmatrix}\sin(\phi)\cos(\theta)&-r\sin(\phi)\sin(\theta)&r\cos(\phi)\cos(\theta)\\\sin(\phi)\sin(\theta)&r\sin(\phi)\cos(\theta)&r\cos(\phi)\sin(\theta)\\\cos(\phi)&0&-r\sin(\phi)\end{bmatrix}=-r^2\sin(\phi).$$

For 4 Dimensions, the Jacobinan is: $$\frac{\partial(x,y,z,w)}{\partial(r,\theta,\phi,\epsilon)}=\begin{bmatrix}\sin(\epsilon)\sin(\phi)\cos(\theta)&-r\sin(\epsilon)\sin(\phi)\sin(\theta)&r\sin(\epsilon)\cos(\phi)\cos(\theta)&r\cos(\epsilon)\sin(\phi)\cos(\theta)\\\sin(\epsilon)\sin(\phi)\sin(\theta)&r\sin(\epsilon)\sin(\phi)\cos(\theta)&r\sin(\epsilon)\cos(\phi)\sin(\theta)&r\cos(\epsilon)\sin(\phi)\sin(\theta)\\\sin(\epsilon)\cos(\phi)&0&-r\sin(\epsilon)\sin(\phi)&r\cos(\epsilon)\cos(\phi)\\\cos(\epsilon)&0&0&-r\sin(\epsilon)\end{bmatrix}\\=r^3\sin^2(\epsilon)\sin(\phi).$$

The pattern starts to arise when raising the dimension: raising the power and adding sines. After changing unique angles to $\theta_k$, the Jacobian for $n$-dimensional polar coordinates, defined by $J_n$ is: $$J_n=(-1)^{n}r^{n-1}\prod_{k=2}^{n}\sin^{k-2}(\theta_k).$$ Alternatively, $J_n$ is defined through: $$\frac{\partial(x_1,x_2,x_3,\ldots,x_n)}{\partial(r,\theta_2,\theta_3,\ldots,\theta_k)}=\begin{bmatrix}\dfrac{\partial{x_1}}{\partial{r}}&\dfrac{\partial{x_1}}{\partial{\theta_2}}&\dfrac{\partial{x_1}}{\partial{\theta_3}}&\ldots&\dfrac{\partial{x_1}}{\partial{\theta_k}}\\\dfrac{\partial{x_2}}{\partial{r}}&\dfrac{\partial{x_2}}{\partial{\theta_2}}\\\dfrac{\partial{x_3}}{\partial{r}}&&\ddots&&\vdots\\\vdots\\\dfrac{\partial{x_k}}{\partial{r}}&&\ldots&&\dfrac{\partial{x_k}}{\partial{\theta_k}}\end{bmatrix}.$$

In integration with multiple integrals, the differential can be found through a specific formula. $$\mathrm dH_{Vn}=\left|{\frac{\partial(x_1,x_2,x_3,\ldots,x_n)}{\partial(r,\theta_2,\theta_3,\ldots,\theta_k)}}\right|\,\mathrm d\bar{H}_{Vn},$$ where $H_{Vn}$ is the hypervolume of dimension $n$ and $\mathrm d\bar{H}_{Vn}=\mathrm dr\,\mathrm d\theta_2\,\mathrm d\theta_3\ldots\mathrm d\theta_k$.

The formula can be simplified by defining $C_n$ as: $|J_n|$, transforming into: $$\mathrm dH_{Vn}=C_{n}\,\mathrm d\bar{H}_{Vn}.$$ So, in integration with $n$ integrals, the polar transformation is: $$\int\cdots\int{f(x_1,x_2,\ldots,x_n)}\,\mathrm dx_1\,\mathrm dx_2\ldots\mathrm dx_n \rightarrow\int\cdots\int{f(g_1(r,\theta_2,\theta_3,\ldots,\theta_n),g_2(r,\theta_2,\theta_3,\ldots,\theta_n),\ldots,g_n(r,\theta_2,\theta_3,\ldots,\theta_n))}C_{n}\,\mathrm d\bar{H}_{Vn},$$ which completes the general formula for the Jacobian and Integration of $n$-dimensional polar coordinates.

$\endgroup$

0

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.