7
$\begingroup$

how to find the following series: $$\sum_{i,j,n\ge1}\frac{n + j + i}{n j i (n + j)(n + i)(j + i)}$$ what i attempted was using symmetry like this \begin{align*} \sum_{i,j,n \ge 1} \frac{n + j + i}{n j i (n + j)(n + i)(j + i)} &= 3 \sum_{i,j,n \ge 1} \frac n{n j i (n + j)(n + i)(j + i)} \\ &= 3 \sum_{i,j,n \ge 1} \frac1{i j (n + i)(n + j)(i + j)}. \end{align*} but i don't know how to proceed. also numerically evaluated $$\sum_{i,j,n\ge1}\frac{n + j + i}{n j i (n + j)(n + i)(j + i)}\approx 2.47$$ which is roughly $$\frac32\sum_{n=1}^\infty \frac{H_n^2}{n^3}\approx2.47791418905674793594$$ so is $$\sum_{i,j,n\ge1}\frac{n + j + i}{n j i (n + j)(n + i)(j + i)}=\frac32\sum_{n=1}^\infty\frac{H_n^2}{n^3}?$$ how to prove this?

New contributor
Wessel is a new contributor to this site. Take care in asking for clarification, commenting, and answering. Check out our Code of Conduct.
$\endgroup$
8
  • 5
    $\begingroup$ By symmetry, $$\begin{align*}S&=\frac{3}{2}\sum_{n,i,j\geq1}\frac{i+j}{nij(n+i)(n+j)(i+j)}\\&=\frac{3}{2}\sum_{n\geq1}\frac{1}{n}\left[\sum_{i\geq1}\frac{1}{i(n+i)}\right]^2\\&=\frac{3}{2}\sum_{n\geq1}\frac{1}{n}\left(\frac{H_n}{n}\right)^2.\end{align*}$$ I don't have a good idea how to evalute the last sum, though. $\endgroup$ Commented 8 hours ago
  • 1
    $\begingroup$ @SangchulLee math.stackexchange.com/questions/555266/… Maybe this is helpful. $\endgroup$ Commented 8 hours ago
  • 1
    $\begingroup$ @Sahaj, Thanks for the link! Now I remember I've seen that posting before. $\endgroup$ Commented 8 hours ago
  • 1
    $\begingroup$ @匚ㄖㄥᗪ乇ᗪ I Could you tell us why you believe the question you mentionned can help to prove the formula of the OP? $\endgroup$ Commented 7 hours ago
  • 2
    $\begingroup$ @匚ㄖㄥᗪ乇ᗪ check the last sum with what in the question you mentionned? $\endgroup$ Commented 7 hours ago

2 Answers 2

5
$\begingroup$

I detail the first comment (in particular, the last step) of @SangchulLee $$\begin{align} S&:=\sum_{i,j,n \ge 1} \frac{n + j + i}{n j i (n + j)(n + i)(j + i)}\\ &= \frac{3}{2}\cdot\sum_{i,j,n \ge 1} \frac{j + i}{n j i (n + j)(n + i)(j + i)}\\ &= \frac{3}{2}\cdot\sum_{i,j,n \ge 1} \frac{1}{n j i (n + j)(n + i)}\\ &=\frac{3}{2}\cdot\sum_{i,j,n \ge 1} \frac{1}{n^3}\cdot\frac{n}{i(n+i)}\cdot\frac{n}{j(n+j)}\\ &=\frac{3}{2}\cdot\sum_{n \ge 1} \left(\frac{1}{n^3}\cdot\left(\sum_{i \ge 1}\left(\frac{1}{i}-\frac{1}{n+i}\right)\right)^2\right)\\ &=\frac{3}{2}\cdot\sum_{n \ge 1} \left(\frac{1}{n^3}\cdot\left(\sum_{i \ge 1}\frac{1}{i}-\sum_{i>n}\frac{1}{i}\right)^2\right) \hspace{0.5cm}\text{not very rigorous, but you have the idea}\\ &=\frac{3}{2}\cdot\sum_{n \ge 1} \left(\frac{1}{n^3}\cdot\left(\sum_{1\le i \le n}\frac{1}{i}\right)^2\right)\\ S&=\frac{3}{2}\cdot\sum_{n \ge 1} \left(\frac{H_n^2}{n^3}\right)\\ \end{align}$$ Q.E.D

$\endgroup$
2
  • 1
    $\begingroup$ Thank you (and Sangchul). This is what I wanted $\endgroup$ Commented 6 hours ago
  • 1
    $\begingroup$ FYI, you can make the “not very rigorous step” rigorous using the summation by parts formula: en.wikipedia.org/wiki/Summation_by_parts. Cheers =) $\endgroup$ Commented 1 hour ago
1
$\begingroup$

derivation of closed form (following from NN2's); let $T=\frac23S$, then from Sangchul Lee's comment,$$ T=\sum_{n,i,j\ge1}\frac1{nij(n+i)(n+j)} $$by collapsing with respect to $j$ we get $$\sum_{i,n\ge1}\frac{H_n}{n^2i(n+i)}$$ which is mostly tautological, since $\sum_{i=1}^\infty\frac1{i(n+i)}=\frac{H_n}n$, returning to where we started.

however, by collapsing with respect to $n$ we get $$\sum_{i,j\ge1}\begin{cases}\frac{H_i-i\zeta(2,1+i)}{i^4}&i=j\\\frac{iH_j-jH_i}{i^2j^2(i-j)}&\mathrm{else}\end{cases}$$ which is useful! along the diagonal, $\sum_{i=1}^\infty\frac{H_i-i\zeta(2,1+i)}{i^4}=\sum_{i=1}^\infty\frac{H_i-i\zeta(2)+iH^{(2)}_i}{i^4}=\left(\sum_{i=1}^\infty\frac{H_i}{i^4}+\frac{H^{(2)}_i}{i^3}\right)-\zeta(2)\zeta(3)$, and off it we can fold $\sum\limits_{i,j\ge1\atop i\ne j}=2\sum\limits_{1\le i<j}$, from whence $2\sum_{i=1}^\infty\sum_{j=i+1}^\infty\frac{iH_j-jH_i}{i^2j^2(i-j)}=2\sum_{i=1}^\infty\frac{H_i^2}{i^3}+\sum_{j=i+1}^\infty\frac{iH_j}{i^2j^2(i-j)}$; $\sum_{i=1}^\infty\frac{H_i^2}{i^3}=T$ is what we want to begin with, so by subtracting both sides from $2T$, $$\begin{aligned} &T=\left(\sum_{i=1}^\infty\frac{H_i}{i^4}+\frac{H^{(2)}_i}{i^3}\right)-\zeta(2)\zeta(3)+2S+2\sum_{i=1}^\infty\sum_{j=i+1}^\infty\frac{iH_j}{i^2j^2(i-j)}\\ \iff&T=\zeta(2)\zeta(3)-\left(\sum_{i=1}^\infty\frac{H_i}{i^4}+\frac{H^{(2)}_i}{i^3}\right)+2\sum_{i=1}^\infty\sum_{j=i+1}^\infty\frac{iH_j}{i^2j^2(j-i)} \end{aligned}$$ then since $\frac1{i(j-i)}=\frac1j\left(\frac1i+\frac1{j-i}\right)$, the last part is $2\sum_{j=1}^\infty\frac{H_j}{j^2}\sum_{i=1}^{j-1}\frac1{i(j-i)}=4\sum_{j=1}^\infty\frac{H_jH_{j-1}}{j^3}=4\sum_{j=1}^\infty\frac{H_j^2}{j^3}-\frac{H_j}{j^4}$; the first addend of the summand is again $T$, so merging the two sums,$$\begin{aligned} &T=\zeta(2)\zeta(3)+4S-\sum_{i=1}^\infty5\frac{H_i}{i^4}+\frac{H^{(2)}_i}{i^3}\\ \iff&3S=\left(\sum_{i=1}^\infty5\frac{H_i}{i^4}+\frac{H^{(2)}_i}{i^3}\right)-\zeta(2)\zeta(3) \end{aligned}$$as a special case of this question (also explained quite concisely and elementarily in step 3 of this blogpost), $\sum_{i=1}^\infty\frac{H_i}{i^4}=3\zeta(5)-\zeta(2)\zeta(3)$, while (by ie. this question) $\sum_{i=1}^\infty\frac{H^{(2)}_i}{i^3}=3\zeta(2,3)+\zeta(2+3)$ which equals (by this question) $\zeta(2)\zeta(3)-\frac92\zeta(5)$, giving the final result $T=\frac72\zeta(5)-\zeta(2)\zeta(3)$, ie. $$S=\frac{21}4\zeta(5)-\frac32\zeta(2)\zeta(3)$$ edit: did not see Sahaj's comment linking this question, although that is closed and my answer does not quite trace out the same path as any answers to it

$\endgroup$

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.