When solving different equations, I have realised, that some roots containing only arithmetic operations and square roots (4th, 8th roots too, because they can be represented using only square roots) can be converted to nested square roots form. Examples (these are roots of equations of 2nd, 4th, 4th and 8th degree): $$\sqrt{2}+\sqrt{3}=\sqrt{5+\sqrt{24}}$$ $$\sqrt{2}+\sqrt{3}+\sqrt{6}=\sqrt{15+\sqrt{160+\sqrt{6912+\sqrt{18874368}}}}$$ $$1+\sqrt{2}+\sqrt{3}+\sqrt{6}=\sqrt{21+\sqrt{413+\sqrt{4656+\sqrt{16588800}}}}$$ $$\sqrt{2}+\sqrt{3}+\sqrt{5}=\sqrt{14+\sqrt{140+\sqrt{4096+\sqrt{8847360}}}}$$ However, I have failed to convert to such form following root (8th degree equation): $$3+\sqrt{2}+\sqrt{3}+\sqrt{5}$$ Performing any operations with it, number of square roots inside increases, what makes me think that converting that root is impossible.
So, question: Can it be done with that root and with what roots in general?
Some forms I was able to get: $$\sqrt{19+6 \sqrt{2}+6 \sqrt{3}+6 \sqrt{5}+2 \sqrt{6}+2 \sqrt{10}+2 \sqrt{15}}$$ $$\sqrt{19+2\left(\sqrt{33+6 \sqrt{30}}+\sqrt{37+6 \sqrt{30}}+\sqrt{51+6 \sqrt{30}}\right)}$$
If one don't know how I got those expressions, here you are an example.
$$\sqrt{2}+\sqrt{3}+\sqrt{5}=\sqrt{\left(\sqrt{2}+\sqrt{3}+\sqrt{5}\right)^2}=$$ $$=\sqrt{10+2 \left(\sqrt{15}+\sqrt{6}+\sqrt{10}\right)}=\sqrt{10+2 \left(\sqrt{15}+\sqrt{\left(\sqrt{6}+\sqrt{10}\right)^2}\right)}=$$ $$=\sqrt{10+2 \left(\sqrt{15}+\sqrt{16+4 \sqrt{15}}\right)}=\sqrt{10+2 \left(\sqrt{15}-a+a+\sqrt{16+4 \sqrt{15}}\right)}=$$ $$=\sqrt{10+2a+2 \left(\sqrt{\left(\sqrt{15}-a\right)^2}+\sqrt{16+4 \sqrt{15}}\right)}=$$ $$=\sqrt{10+2a+2 \left(\sqrt{15+a^2-2a \sqrt{15}}+\sqrt{16+4 \sqrt{15}}\right)}=$$ $$[2a=4 \Rightarrow a=2]$$ $$=\sqrt{14+2 \left(\sqrt{19-4\sqrt{15}}+\sqrt{16+4 \sqrt{15}}\right)}=$$ $$=\sqrt{14+2 \sqrt{\left(\sqrt{19-4\sqrt{15}}+\sqrt{16+4 \sqrt{15}}\right)^2}}=$$ $$=\sqrt{14+2 \sqrt{35+4 \sqrt{16+3 \sqrt{15}}}}=\sqrt{14+\sqrt{140+\sqrt{4096+\sqrt{8847360}}}}$$